Wenhao Yuan, Zaili Xiong, Meirong Zeng, Zhongyue Zhou, Zhandong Wang, Jiuzhong Yang, Long Zhao, Yang Pan, Fei Qi
{"title":"Advances and Challenges in Speciation Measurement and Microkinetic Modeling for Gas-Solid Heterogeneous Catalysis.","authors":"Wenhao Yuan, Zaili Xiong, Meirong Zeng, Zhongyue Zhou, Zhandong Wang, Jiuzhong Yang, Long Zhao, Yang Pan, Fei Qi","doi":"10.1021/acs.jpca.4c06404","DOIUrl":null,"url":null,"abstract":"<p><p>Microkinetic modeling of heterogeneous catalysis serves as an efficient tool bridging atom-scale first-principles calculations and macroscale industrial reactor simulations. Fundamental understanding of the microkinetic mechanism relies on a combination of experimental and theoretical studies. This Perspective presents an overview of the latest progress of experimental and microkinetic modeling approaches applied to gas-solid catalytic kinetics. Then, opportunities and challenges are presented based on recent research progress in gas-solid catalysis and combustion chemistry. For experimental approaches, the importance of ideal catalytic reactors, structured catalysts, and precise elementary rate measurements is emphasized. Additionally, integrating spatiotemporally resolved <i>operando</i> gas-phase diagnostics with surface-adsorbed species characterization methods offers new opportunities for gaining deeper insights into gas-surface reactions. In microkinetic modeling, a hybrid rate parameter evaluation approach that combines first-principles calculations with semiempirical methods, followed by automated mechanism generation and data-driven optimization, opens new avenues for efficiently constructing surface mechanisms. Furthermore, extending microkinetic modeling beyond mean-field approximations allows simulations under realistic catalyst operating conditions. Finally, the critical role of gas-phase mechanisms and comprehensive microkinetic modeling analyses in advancing our fundamental understanding of gas-solid catalytic processes is highlighted.</p>","PeriodicalId":59,"journal":{"name":"The Journal of Physical Chemistry A","volume":" ","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2025-01-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of Physical Chemistry A","FirstCategoryId":"1","ListUrlMain":"https://doi.org/10.1021/acs.jpca.4c06404","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Microkinetic modeling of heterogeneous catalysis serves as an efficient tool bridging atom-scale first-principles calculations and macroscale industrial reactor simulations. Fundamental understanding of the microkinetic mechanism relies on a combination of experimental and theoretical studies. This Perspective presents an overview of the latest progress of experimental and microkinetic modeling approaches applied to gas-solid catalytic kinetics. Then, opportunities and challenges are presented based on recent research progress in gas-solid catalysis and combustion chemistry. For experimental approaches, the importance of ideal catalytic reactors, structured catalysts, and precise elementary rate measurements is emphasized. Additionally, integrating spatiotemporally resolved operando gas-phase diagnostics with surface-adsorbed species characterization methods offers new opportunities for gaining deeper insights into gas-surface reactions. In microkinetic modeling, a hybrid rate parameter evaluation approach that combines first-principles calculations with semiempirical methods, followed by automated mechanism generation and data-driven optimization, opens new avenues for efficiently constructing surface mechanisms. Furthermore, extending microkinetic modeling beyond mean-field approximations allows simulations under realistic catalyst operating conditions. Finally, the critical role of gas-phase mechanisms and comprehensive microkinetic modeling analyses in advancing our fundamental understanding of gas-solid catalytic processes is highlighted.
期刊介绍:
The Journal of Physical Chemistry A is devoted to reporting new and original experimental and theoretical basic research of interest to physical chemists, biophysical chemists, and chemical physicists.