Modification of fiber-reinforced composites using polymer blends as matrices

IF 2.3 4区 化学 Q3 POLYMER SCIENCE
Takayuki Hirai
{"title":"Modification of fiber-reinforced composites using polymer blends as matrices","authors":"Takayuki Hirai","doi":"10.1038/s41428-024-00977-8","DOIUrl":null,"url":null,"abstract":"Composite materials are widely used in many industrial products because they combine the properties of organic and inorganic materials. This review focuses on the property modification of composite materials where polymer blends are used as matrices to obtain functional composites. Polymer blends can be fabricated via the physical process of melt mixing; thus, they have good scalability. However, poor material design criteria compared with those of polymer synthesis are critical defects in polymer blending. To address this problem, we focused on the multiscale phase separation in polymer blends. Polymer blends can be divided into three categories according to their phase morphology: immiscible, miscible, and reactive. They exhibit characteristic behaviors that depend on their morphology. We propose a novel material design concept to combine polymers with different phase morphologies to obtain a combination of modification mechanisms. To provide specific examples, two previous studies on the modification of carbon- and glass-fiber-reinforced plastics were summarized. One study involves improving the hygrothermal resistance of carbon-fiber-reinforced polyamide by incorporating both miscible and immiscible components into the polyamide. The other study involves fabricating transparent glass-fiber-reinforced polyamides by investigating miscible and reactive blends. Our recent study on the property modification of composite materials where polymer blends are used as matrices were summarized. Polymer blends have good scalability; however, poor material design criteria is a critical defect in polymer blending. To address this problem, we focused on the multiscale phase separation in polymer blends. We propose a novel material design concept to combine polymers with different phase morphologies to obtain a combination of modification mechanisms, and hygrothermal resistant CFRP and transparent GFRP using polymer blends as matrix were obtained.","PeriodicalId":20302,"journal":{"name":"Polymer Journal","volume":"57 1","pages":"79-86"},"PeriodicalIF":2.3000,"publicationDate":"2024-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Polymer Journal","FirstCategoryId":"92","ListUrlMain":"https://www.nature.com/articles/s41428-024-00977-8","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Composite materials are widely used in many industrial products because they combine the properties of organic and inorganic materials. This review focuses on the property modification of composite materials where polymer blends are used as matrices to obtain functional composites. Polymer blends can be fabricated via the physical process of melt mixing; thus, they have good scalability. However, poor material design criteria compared with those of polymer synthesis are critical defects in polymer blending. To address this problem, we focused on the multiscale phase separation in polymer blends. Polymer blends can be divided into three categories according to their phase morphology: immiscible, miscible, and reactive. They exhibit characteristic behaviors that depend on their morphology. We propose a novel material design concept to combine polymers with different phase morphologies to obtain a combination of modification mechanisms. To provide specific examples, two previous studies on the modification of carbon- and glass-fiber-reinforced plastics were summarized. One study involves improving the hygrothermal resistance of carbon-fiber-reinforced polyamide by incorporating both miscible and immiscible components into the polyamide. The other study involves fabricating transparent glass-fiber-reinforced polyamides by investigating miscible and reactive blends. Our recent study on the property modification of composite materials where polymer blends are used as matrices were summarized. Polymer blends have good scalability; however, poor material design criteria is a critical defect in polymer blending. To address this problem, we focused on the multiscale phase separation in polymer blends. We propose a novel material design concept to combine polymers with different phase morphologies to obtain a combination of modification mechanisms, and hygrothermal resistant CFRP and transparent GFRP using polymer blends as matrix were obtained.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Polymer Journal
Polymer Journal 化学-高分子科学
CiteScore
5.60
自引率
7.10%
发文量
131
审稿时长
2.5 months
期刊介绍: Polymer Journal promotes research from all aspects of polymer science from anywhere in the world and aims to provide an integrated platform for scientific communication that assists the advancement of polymer science and related fields. The journal publishes Original Articles, Notes, Short Communications and Reviews. Subject areas and topics of particular interest within the journal''s scope include, but are not limited to, those listed below: Polymer synthesis and reactions Polymer structures Physical properties of polymers Polymer surface and interfaces Functional polymers Supramolecular polymers Self-assembled materials Biopolymers and bio-related polymer materials Polymer engineering.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信