Peptide-mediated gene and protein delivery systems to plant mitochondria for modifying mitochondrial functions

IF 2.3 4区 化学 Q3 POLYMER SCIENCE
Naoya Abe, Keiji Numata
{"title":"Peptide-mediated gene and protein delivery systems to plant mitochondria for modifying mitochondrial functions","authors":"Naoya Abe, Keiji Numata","doi":"10.1038/s41428-024-00973-y","DOIUrl":null,"url":null,"abstract":"Plant mitochondria are essential for energy production and male sterility. The genetic transformation of plant mitochondria has attracted attention due to its potential to improve the mitochondrial function and agricultural productivity of energy crops. However, mitochondrial genome editing has been challenging because the delivery of the macromolecules needed for genome engineering to mitochondria has not been established until now. In addition, the genome editing efficiency in mitochondria needs to be improved as much as possible due to the lack of a selection marker for mitochondria. To achieve mitochondrial modification, the proteins and/or DNA/RNA needed for genome editing should be delivered to mitochondria precisely and efficiently. Peptides have been utilized to improve delivery efficiency to plant mitochondria. Thus, we herein review advances in delivery technologies related to plant mitochondrial genome engineering using various functional peptides. There are many barriers to gene and protein delivery to plant mitochondria, such as cell walls, cell membranes, and cytosolic localization. Functional peptides have been used to overcome these barriers. Peptides have a characteristic function depending on their sequence and high-order structure. The cytotoxicity of these peptides is also low. Therefore, functional peptides have attracted attention for their ability to improve gene and protein delivery efficiency to plant mitochondria.","PeriodicalId":20302,"journal":{"name":"Polymer Journal","volume":"57 1","pages":"57-68"},"PeriodicalIF":2.3000,"publicationDate":"2024-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41428-024-00973-y.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Polymer Journal","FirstCategoryId":"92","ListUrlMain":"https://www.nature.com/articles/s41428-024-00973-y","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Plant mitochondria are essential for energy production and male sterility. The genetic transformation of plant mitochondria has attracted attention due to its potential to improve the mitochondrial function and agricultural productivity of energy crops. However, mitochondrial genome editing has been challenging because the delivery of the macromolecules needed for genome engineering to mitochondria has not been established until now. In addition, the genome editing efficiency in mitochondria needs to be improved as much as possible due to the lack of a selection marker for mitochondria. To achieve mitochondrial modification, the proteins and/or DNA/RNA needed for genome editing should be delivered to mitochondria precisely and efficiently. Peptides have been utilized to improve delivery efficiency to plant mitochondria. Thus, we herein review advances in delivery technologies related to plant mitochondrial genome engineering using various functional peptides. There are many barriers to gene and protein delivery to plant mitochondria, such as cell walls, cell membranes, and cytosolic localization. Functional peptides have been used to overcome these barriers. Peptides have a characteristic function depending on their sequence and high-order structure. The cytotoxicity of these peptides is also low. Therefore, functional peptides have attracted attention for their ability to improve gene and protein delivery efficiency to plant mitochondria.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Polymer Journal
Polymer Journal 化学-高分子科学
CiteScore
5.60
自引率
7.10%
发文量
131
审稿时长
2.5 months
期刊介绍: Polymer Journal promotes research from all aspects of polymer science from anywhere in the world and aims to provide an integrated platform for scientific communication that assists the advancement of polymer science and related fields. The journal publishes Original Articles, Notes, Short Communications and Reviews. Subject areas and topics of particular interest within the journal''s scope include, but are not limited to, those listed below: Polymer synthesis and reactions Polymer structures Physical properties of polymers Polymer surface and interfaces Functional polymers Supramolecular polymers Self-assembled materials Biopolymers and bio-related polymer materials Polymer engineering.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信