Development of polymer syntheses using diazocarbonyl compounds as monomers

IF 2.3 4区 化学 Q3 POLYMER SCIENCE
Eiji Ihara
{"title":"Development of polymer syntheses using diazocarbonyl compounds as monomers","authors":"Eiji Ihara","doi":"10.1038/s41428-024-00954-1","DOIUrl":null,"url":null,"abstract":"Recent results from the author’s research group on the development of polymer syntheses using diazocarbonyl compounds as monomers are described. A series of new Pd-based initiating systems for C1 polymerization of diazoacetate have been developed, each of which possesses characteristic initiating ability with respect to high-molecular-weight polymer synthesis, tacticity control, and chain end functionalization. The use of functional ester substituents has led to polymers with unique properties and functionalities in comparison to their vinyl polymer counterparts [poly(alkyl acrylate)] with the same ester substituent. Polycondensations using bis(diazocarbonyl) compounds as monomers are also described. By utilizing a variety of reactivities of a diazocarbonyl group, a series of three-, two-, and single-component polycondensations have been realized, affording new polymers whose chemical structures cannot be attained by any existing method for polymer syntheses. Polymer syntheses utilizing diazocarbonyl compounds as monomers are described. Pd-based initiators active for the C1 polymerization of diazoacetates have been developed; the presence of η3-type anionic ligand on the Pd center has been proved to be essential for the initiator to be highly active for the polymerization. Pd complexes bearing naphthoquinone or its derivatives as a ligand were effective for the initiator generation in conjunction with NaBPh4. By using a series of bis(diazocarbonyl) compounds as monomers, three-, two-, and single-component polycondensations have been newly developed, affording unprecedented polymer structures.","PeriodicalId":20302,"journal":{"name":"Polymer Journal","volume":"57 1","pages":"1-23"},"PeriodicalIF":2.3000,"publicationDate":"2024-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Polymer Journal","FirstCategoryId":"92","ListUrlMain":"https://www.nature.com/articles/s41428-024-00954-1","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Recent results from the author’s research group on the development of polymer syntheses using diazocarbonyl compounds as monomers are described. A series of new Pd-based initiating systems for C1 polymerization of diazoacetate have been developed, each of which possesses characteristic initiating ability with respect to high-molecular-weight polymer synthesis, tacticity control, and chain end functionalization. The use of functional ester substituents has led to polymers with unique properties and functionalities in comparison to their vinyl polymer counterparts [poly(alkyl acrylate)] with the same ester substituent. Polycondensations using bis(diazocarbonyl) compounds as monomers are also described. By utilizing a variety of reactivities of a diazocarbonyl group, a series of three-, two-, and single-component polycondensations have been realized, affording new polymers whose chemical structures cannot be attained by any existing method for polymer syntheses. Polymer syntheses utilizing diazocarbonyl compounds as monomers are described. Pd-based initiators active for the C1 polymerization of diazoacetates have been developed; the presence of η3-type anionic ligand on the Pd center has been proved to be essential for the initiator to be highly active for the polymerization. Pd complexes bearing naphthoquinone or its derivatives as a ligand were effective for the initiator generation in conjunction with NaBPh4. By using a series of bis(diazocarbonyl) compounds as monomers, three-, two-, and single-component polycondensations have been newly developed, affording unprecedented polymer structures.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Polymer Journal
Polymer Journal 化学-高分子科学
CiteScore
5.60
自引率
7.10%
发文量
131
审稿时长
2.5 months
期刊介绍: Polymer Journal promotes research from all aspects of polymer science from anywhere in the world and aims to provide an integrated platform for scientific communication that assists the advancement of polymer science and related fields. The journal publishes Original Articles, Notes, Short Communications and Reviews. Subject areas and topics of particular interest within the journal''s scope include, but are not limited to, those listed below: Polymer synthesis and reactions Polymer structures Physical properties of polymers Polymer surface and interfaces Functional polymers Supramolecular polymers Self-assembled materials Biopolymers and bio-related polymer materials Polymer engineering.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信