Controlled cationic ring-opening polymerization of L-lactide by organic ion pair: novel approach to isotactic-rich and crystalline polylactide

IF 10.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Zhiqiang Ding, Mingqian Wang, Zijing Zhou, Bin Wang, Yuesheng Li
{"title":"Controlled cationic ring-opening polymerization of L-lactide by organic ion pair: novel approach to isotactic-rich and crystalline polylactide","authors":"Zhiqiang Ding,&nbsp;Mingqian Wang,&nbsp;Zijing Zhou,&nbsp;Bin Wang,&nbsp;Yuesheng Li","doi":"10.1007/s11426-024-2370-6","DOIUrl":null,"url":null,"abstract":"<div><p>Living/controlled cationic ring-opening polymerization (ROP) of <i>L</i>-lactide is a promising approach to isotactic-rich and crystalline poly(<i>L</i>-lactide). In contrast with the unsubstituted lactones, <i>L</i>-LA can not be polymerized by organic Lewis acids or carbenium ions, and the state of the art in this field is the cationic ROP of <i>L</i>-LA catalyzed by Brønsted acid/alcohol system <i>via</i> activated monomer mechanism. Herein, we reported the first example of controlled cationic ROP of <i>L</i>-LA by using Meerweintype ion pair [Me<sub>3</sub>O]<sup>+</sup>[B(C<sub>6</sub>F<sub>5</sub>)<sub>4</sub>]<sup>−</sup> as the catalyst. [Me<sub>3</sub>O]<sup>+</sup>[B(C<sub>6</sub>F<sub>5</sub>)<sub>4</sub>]<sup>−</sup> promoted rapid <i>L</i>-LA cationic polymerization in the absence of alcohol, producing isotactic-rich and crystalline PLLA without transesterification and epimerization side reactions. An activated chain end mechanism, involving twice S<sub>N</sub>2 substitution and configuration-inversion (<i>S</i>→<i>R</i>→<i>S</i>) with the assistance of released Me<sub>2</sub>O, was proposed and further verified by density functional theory and control experiments. This work expands the catalytic toolbox of isotactic-rich and crystalline polylactide synthesis. It represents a unique example of cationic-controlled polymerization of <i>L</i>-LA catalyzed by an organic ion pair.</p></div>","PeriodicalId":772,"journal":{"name":"Science China Chemistry","volume":"68 1","pages":"394 - 402"},"PeriodicalIF":10.4000,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science China Chemistry","FirstCategoryId":"1","ListUrlMain":"https://link.springer.com/article/10.1007/s11426-024-2370-6","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Living/controlled cationic ring-opening polymerization (ROP) of L-lactide is a promising approach to isotactic-rich and crystalline poly(L-lactide). In contrast with the unsubstituted lactones, L-LA can not be polymerized by organic Lewis acids or carbenium ions, and the state of the art in this field is the cationic ROP of L-LA catalyzed by Brønsted acid/alcohol system via activated monomer mechanism. Herein, we reported the first example of controlled cationic ROP of L-LA by using Meerweintype ion pair [Me3O]+[B(C6F5)4] as the catalyst. [Me3O]+[B(C6F5)4] promoted rapid L-LA cationic polymerization in the absence of alcohol, producing isotactic-rich and crystalline PLLA without transesterification and epimerization side reactions. An activated chain end mechanism, involving twice SN2 substitution and configuration-inversion (SRS) with the assistance of released Me2O, was proposed and further verified by density functional theory and control experiments. This work expands the catalytic toolbox of isotactic-rich and crystalline polylactide synthesis. It represents a unique example of cationic-controlled polymerization of L-LA catalyzed by an organic ion pair.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Science China Chemistry
Science China Chemistry CHEMISTRY, MULTIDISCIPLINARY-
CiteScore
14.40
自引率
7.30%
发文量
3787
审稿时长
2.2 months
期刊介绍: Science China Chemistry, co-sponsored by the Chinese Academy of Sciences and the National Natural Science Foundation of China and published by Science China Press, publishes high-quality original research in both basic and applied chemistry. Indexed by Science Citation Index, it is a premier academic journal in the field. Categories of articles include: Highlights. Brief summaries and scholarly comments on recent research achievements in any field of chemistry. Perspectives. Concise reports on thelatest chemistry trends of interest to scientists worldwide, including discussions of research breakthroughs and interpretations of important science and funding policies. Reviews. In-depth summaries of representative results and achievements of the past 5–10 years in selected topics based on or closely related to the research expertise of the authors, providing a thorough assessment of the significance, current status, and future research directions of the field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信