Improved Electrochemical Performance of Co3O4 Incorporated MnO2 Nanowires for Energy Storage Applications

IF 2.6 4区 综合性期刊 Q2 MULTIDISCIPLINARY SCIENCES
Md. Hasive Ahmad, Md. Roxy Islam, Muhammad Rakibul Islam
{"title":"Improved Electrochemical Performance of Co3O4 Incorporated MnO2 Nanowires for Energy Storage Applications","authors":"Md. Hasive Ahmad,&nbsp;Md. Roxy Islam,&nbsp;Muhammad Rakibul Islam","doi":"10.1007/s13369-024-09421-8","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper, cobalt oxide incorporated manganese dioxide nanowires (α-MnO<sub>2</sub>@Co<sub>3</sub>O<sub>4</sub>) have been synthesized by a facile hydrothermal method. The surface morphological, structural, chemical bonding, and electrochemical properties of α-MnO<sub>2</sub>@Co<sub>3</sub>O<sub>4</sub> at different concentrations (1, 3, 5, 7 wt%) Co<sub>3</sub>O<sub>4</sub> nanoparticles (NPs) were studied. The morphological analysis reveals that the Co<sub>3</sub>O<sub>4</sub> nanoparticles are attached to the surface of randomly oriented MnO<sub>2</sub> nanowires. The surface chemical state investigation reveals the formation of oxygen vacancy in the nanocomposite (NC) due to the incorporation of Co<sub>3</sub>O<sub>4</sub> NPs. Incorporation of Co<sub>3</sub>O<sub>4</sub> was also found to improve the electrochemical performance of the nanocomposite. The hydrothermally produced α-MnO<sub>2</sub>@Co<sub>3</sub>O<sub>4</sub> nanocomposite exhibits the highest specific capacitance of 654.57 Fg<sup>−1</sup> at a current density of 0.15 Ag<sup>−1</sup>. The unique structure and the presence of oxygen vacancy of the hetero-structured α-MnO<sub>2</sub>@Co<sub>3</sub>O<sub>4</sub> electrode enable rapid electron and ion transport, resulting in improved capacitive performance. The distinctive α-MnO<sub>2</sub>@Co<sub>3</sub>O<sub>4</sub> nanocomposite may offer a novel route for advanced energy storage applications.</p></div>","PeriodicalId":54354,"journal":{"name":"Arabian Journal for Science and Engineering","volume":"50 1","pages":"583 - 596"},"PeriodicalIF":2.6000,"publicationDate":"2024-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Arabian Journal for Science and Engineering","FirstCategoryId":"103","ListUrlMain":"https://link.springer.com/article/10.1007/s13369-024-09421-8","RegionNum":4,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, cobalt oxide incorporated manganese dioxide nanowires (α-MnO2@Co3O4) have been synthesized by a facile hydrothermal method. The surface morphological, structural, chemical bonding, and electrochemical properties of α-MnO2@Co3O4 at different concentrations (1, 3, 5, 7 wt%) Co3O4 nanoparticles (NPs) were studied. The morphological analysis reveals that the Co3O4 nanoparticles are attached to the surface of randomly oriented MnO2 nanowires. The surface chemical state investigation reveals the formation of oxygen vacancy in the nanocomposite (NC) due to the incorporation of Co3O4 NPs. Incorporation of Co3O4 was also found to improve the electrochemical performance of the nanocomposite. The hydrothermally produced α-MnO2@Co3O4 nanocomposite exhibits the highest specific capacitance of 654.57 Fg−1 at a current density of 0.15 Ag−1. The unique structure and the presence of oxygen vacancy of the hetero-structured α-MnO2@Co3O4 electrode enable rapid electron and ion transport, resulting in improved capacitive performance. The distinctive α-MnO2@Co3O4 nanocomposite may offer a novel route for advanced energy storage applications.

Abstract Image

用于储能的Co3O4掺杂MnO2纳米线电化学性能的改进
本文采用水热法合成了氧化钴掺杂二氧化锰纳米线(α-MnO2@Co3O4)。研究了α-MnO2@Co3O4在不同浓度(1、3、5、7 wt%) Co3O4纳米粒子(NPs)下的表面形貌、结构、化学键和电化学性能。形貌分析表明,Co3O4纳米粒子附着在随机取向的二氧化锰纳米线表面。纳米复合材料(NC)的表面化学态分析表明,co3o4nps的加入导致了氧空位的形成。Co3O4的加入也改善了纳米复合材料的电化学性能。当电流密度为0.15 Ag−1时,水热法制备的α-MnO2@Co3O4纳米复合材料的比电容最高为654.57 Fg−1。异质结构α-MnO2@Co3O4电极的独特结构和氧空位的存在使电子和离子快速传递,从而提高了电容性能。独特的α-MnO2@Co3O4纳米复合材料可能为先进的储能应用提供新的途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Arabian Journal for Science and Engineering
Arabian Journal for Science and Engineering MULTIDISCIPLINARY SCIENCES-
CiteScore
5.70
自引率
3.40%
发文量
993
期刊介绍: King Fahd University of Petroleum & Minerals (KFUPM) partnered with Springer to publish the Arabian Journal for Science and Engineering (AJSE). AJSE, which has been published by KFUPM since 1975, is a recognized national, regional and international journal that provides a great opportunity for the dissemination of research advances from the Kingdom of Saudi Arabia, MENA and the world.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信