Analytical Model for Coupled Water Flow and Bubble-facilitated VOC Transport From the Saturated Zone to the Atmosphere

IF 3.8 4区 环境科学与生态学 Q2 ENVIRONMENTAL SCIENCES
Shifang Wang, Lei Song, Haijie He, Wenjie Zhang
{"title":"Analytical Model for Coupled Water Flow and Bubble-facilitated VOC Transport From the Saturated Zone to the Atmosphere","authors":"Shifang Wang,&nbsp;Lei Song,&nbsp;Haijie He,&nbsp;Wenjie Zhang","doi":"10.1007/s11270-024-07707-z","DOIUrl":null,"url":null,"abstract":"<div><p>An analytical model is presented for assessing the coupled processes that govern water flow and volatile organic compound (VOC) transport from the saturated zone through the vadose region and into the atmosphere. The model is verified by a finite element solution. The sensitivity analyses are performed to evaluate the influence of key parameters, such as bubble upward velocity, water flow, atmospheric conditions on VOC transport and emissions from subsoil environments. VOC transport is sensitive to soil texture, which significantly impacts the capillary fringe in the vadose zone. Higher VOC concentrations are observed in sandy soils compared to silt loam, as the larger volumetric water content observed in the silt loam reduces effective VOC diffusivity. Traditional diffusion-limited models show a sharp concentration decrease in the saturated zone due to low diffusion coefficients of VOC in water, while bubble-facilitated transport maintains higher VOC concentrations in the saturated zone. The relative VOC concentration for diffusion-limited models can be around four orders magnitude lower than the calculated value for bubble-facilitated VOC transport model. Increased bubble transport velocity or reduced saturated zone thickness enhances the VOC concentration gradient, resulting in significantly higher emission fluxes. The atmospheric boundary layer also significantly impacts VOC concentrations and emissions. Ignoring the effects of the atmospheric boundary layer can lead to underestimations of VOC emission flux by a factor of 1.2. These findings highlight the significance of coupled bubble and water flow for the transport of VOCs in the saturated–unsaturated-atmospheric system.</p></div>","PeriodicalId":808,"journal":{"name":"Water, Air, & Soil Pollution","volume":"236 2","pages":""},"PeriodicalIF":3.8000,"publicationDate":"2025-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Water, Air, & Soil Pollution","FirstCategoryId":"6","ListUrlMain":"https://link.springer.com/article/10.1007/s11270-024-07707-z","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

An analytical model is presented for assessing the coupled processes that govern water flow and volatile organic compound (VOC) transport from the saturated zone through the vadose region and into the atmosphere. The model is verified by a finite element solution. The sensitivity analyses are performed to evaluate the influence of key parameters, such as bubble upward velocity, water flow, atmospheric conditions on VOC transport and emissions from subsoil environments. VOC transport is sensitive to soil texture, which significantly impacts the capillary fringe in the vadose zone. Higher VOC concentrations are observed in sandy soils compared to silt loam, as the larger volumetric water content observed in the silt loam reduces effective VOC diffusivity. Traditional diffusion-limited models show a sharp concentration decrease in the saturated zone due to low diffusion coefficients of VOC in water, while bubble-facilitated transport maintains higher VOC concentrations in the saturated zone. The relative VOC concentration for diffusion-limited models can be around four orders magnitude lower than the calculated value for bubble-facilitated VOC transport model. Increased bubble transport velocity or reduced saturated zone thickness enhances the VOC concentration gradient, resulting in significantly higher emission fluxes. The atmospheric boundary layer also significantly impacts VOC concentrations and emissions. Ignoring the effects of the atmospheric boundary layer can lead to underestimations of VOC emission flux by a factor of 1.2. These findings highlight the significance of coupled bubble and water flow for the transport of VOCs in the saturated–unsaturated-atmospheric system.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Water, Air, & Soil Pollution
Water, Air, & Soil Pollution 环境科学-环境科学
CiteScore
4.50
自引率
6.90%
发文量
448
审稿时长
2.6 months
期刊介绍: Water, Air, & Soil Pollution is an international, interdisciplinary journal on all aspects of pollution and solutions to pollution in the biosphere. This includes chemical, physical and biological processes affecting flora, fauna, water, air and soil in relation to environmental pollution. Because of its scope, the subject areas are diverse and include all aspects of pollution sources, transport, deposition, accumulation, acid precipitation, atmospheric pollution, metals, aquatic pollution including marine pollution and ground water, waste water, pesticides, soil pollution, sewage, sediment pollution, forestry pollution, effects of pollutants on humans, vegetation, fish, aquatic species, micro-organisms, and animals, environmental and molecular toxicology applied to pollution research, biosensors, global and climate change, ecological implications of pollution and pollution models. Water, Air, & Soil Pollution also publishes manuscripts on novel methods used in the study of environmental pollutants, environmental toxicology, environmental biology, novel environmental engineering related to pollution, biodiversity as influenced by pollution, novel environmental biotechnology as applied to pollution (e.g. bioremediation), environmental modelling and biorestoration of polluted environments. Articles should not be submitted that are of local interest only and do not advance international knowledge in environmental pollution and solutions to pollution. Articles that simply replicate known knowledge or techniques while researching a local pollution problem will normally be rejected without review. Submitted articles must have up-to-date references, employ the correct experimental replication and statistical analysis, where needed and contain a significant contribution to new knowledge. The publishing and editorial team sincerely appreciate your cooperation. Water, Air, & Soil Pollution publishes research papers; review articles; mini-reviews; and book reviews.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信