Analysis of grinding temperature and performance of high strength steel 20Cr2Ni4A

IF 4.4 3区 工程技术 Q1 ENGINEERING, CIVIL
Zhipeng Su, Zhiqiang Liang, Yuchao Du, Qinglong An, Jiaqiang Dang, Yubin Xiao, Hao Huang, Juan Li, Fei Wang, Zhengyi Wei
{"title":"Analysis of grinding temperature and performance of high strength steel 20Cr2Ni4A","authors":"Zhipeng Su,&nbsp;Zhiqiang Liang,&nbsp;Yuchao Du,&nbsp;Qinglong An,&nbsp;Jiaqiang Dang,&nbsp;Yubin Xiao,&nbsp;Hao Huang,&nbsp;Juan Li,&nbsp;Fei Wang,&nbsp;Zhengyi Wei","doi":"10.1007/s43452-024-01108-z","DOIUrl":null,"url":null,"abstract":"<div><p>In order to enhance the grinding performance of high-strength steel 20Cr2Ni4A, a grinding temperature model was constructed, taking into account the contact deformation of the grinding wheel and workpiece. The accuracy of model was validated. The results of the simulation and experimental studies indicate that the grinding temperature increases from 299 to 617 °C as the grinding depth increases from 10 to 110 μm, the grinding temperature increases from 321 to 463 °C as the grinding speed increases from 5 to 30 m/s. In comparison to the effects of grinding depth and grinding speed, the influence of feed speed on grinding temperature is relatively insignificant, and the grinding temperature fluctuates in the range of 600–700 ℃. The prediction accuracy of the temperature model can reach 88.9%. The experimental results of the grinding performance demonstrate that when the grinding depth is 10 μm, the surface roughness is approximately 0.392 μm, the maximum grinding temperature is approximately 300 °C, the maximum residual compressive stress can reach 607 MPa, and there is no obvious white layer on the subsurface. When the grinding depth is 110 μm, the surface roughness is approximately 1.116 μm, and the maximum grinding temperature is approximately 600 °C. The thickness of the white layer is approximately 4.03 μm. The research results provide a reference for the grinding process design of high strength-strength steel 20Cr2Ni4A.</p></div>","PeriodicalId":55474,"journal":{"name":"Archives of Civil and Mechanical Engineering","volume":"25 1","pages":""},"PeriodicalIF":4.4000,"publicationDate":"2025-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Archives of Civil and Mechanical Engineering","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s43452-024-01108-z","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 0

Abstract

In order to enhance the grinding performance of high-strength steel 20Cr2Ni4A, a grinding temperature model was constructed, taking into account the contact deformation of the grinding wheel and workpiece. The accuracy of model was validated. The results of the simulation and experimental studies indicate that the grinding temperature increases from 299 to 617 °C as the grinding depth increases from 10 to 110 μm, the grinding temperature increases from 321 to 463 °C as the grinding speed increases from 5 to 30 m/s. In comparison to the effects of grinding depth and grinding speed, the influence of feed speed on grinding temperature is relatively insignificant, and the grinding temperature fluctuates in the range of 600–700 ℃. The prediction accuracy of the temperature model can reach 88.9%. The experimental results of the grinding performance demonstrate that when the grinding depth is 10 μm, the surface roughness is approximately 0.392 μm, the maximum grinding temperature is approximately 300 °C, the maximum residual compressive stress can reach 607 MPa, and there is no obvious white layer on the subsurface. When the grinding depth is 110 μm, the surface roughness is approximately 1.116 μm, and the maximum grinding temperature is approximately 600 °C. The thickness of the white layer is approximately 4.03 μm. The research results provide a reference for the grinding process design of high strength-strength steel 20Cr2Ni4A.

20Cr2Ni4A高强度钢磨削温度及性能分析
为了提高高强度钢20Cr2Ni4A的磨削性能,建立了考虑砂轮与工件接触变形的磨削温度模型。验证了模型的准确性。仿真和实验研究结果表明,当磨削深度从10 μm增加到110 μm时,磨削温度从299℃升高到617℃;当磨削速度从5 ~ 30 m/s时,磨削温度从321℃升高到463℃。与磨削深度和磨削速度的影响相比,进给速度对磨削温度的影响相对较小,磨削温度在600 ~ 700℃范围内波动。温度模型的预测精度可达88.9%。磨削性能实验结果表明,当磨削深度为10 μm时,表面粗糙度约为0.392 μm,最高磨削温度约为300℃,最大残余压应力可达607 MPa,亚表面无明显的白层。当磨削深度为110 μm时,表面粗糙度约为1.116 μm,最高磨削温度约为600℃。白层厚度约为4.03 μm。研究结果可为20Cr2Ni4A高强度钢的磨削工艺设计提供参考。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Archives of Civil and Mechanical Engineering
Archives of Civil and Mechanical Engineering 工程技术-材料科学:综合
CiteScore
6.80
自引率
9.10%
发文量
201
审稿时长
4 months
期刊介绍: Archives of Civil and Mechanical Engineering (ACME) publishes both theoretical and experimental original research articles which explore or exploit new ideas and techniques in three main areas: structural engineering, mechanics of materials and materials science. The aim of the journal is to advance science related to structural engineering focusing on structures, machines and mechanical systems. The journal also promotes advancement in the area of mechanics of materials, by publishing most recent findings in elasticity, plasticity, rheology, fatigue and fracture mechanics. The third area the journal is concentrating on is materials science, with emphasis on metals, composites, etc., their structures and properties as well as methods of evaluation. In addition to research papers, the Editorial Board welcomes state-of-the-art reviews on specialized topics. All such articles have to be sent to the Editor-in-Chief before submission for pre-submission review process. Only articles approved by the Editor-in-Chief in pre-submission process can be submitted to the journal for further processing. Approval in pre-submission stage doesn''t guarantee acceptance for publication as all papers are subject to a regular referee procedure.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信