Electrostatic Potentials during Adsorption and Photochemical Reactions of Pyranine on Bilayer Lipid Membranes

IF 1.1 Q4 CELL BIOLOGY
V. S. Sokolov, V. Yu. Tashkin, D. D. Zykova, L. E. Pozdeeva
{"title":"Electrostatic Potentials during Adsorption and Photochemical Reactions of Pyranine on Bilayer Lipid Membranes","authors":"V. S. Sokolov,&nbsp;V. Yu. Tashkin,&nbsp;D. D. Zykova,&nbsp;L. E. Pozdeeva","doi":"10.1134/S1990747824700363","DOIUrl":null,"url":null,"abstract":"<p>Adsorption and photochemical reactions of pyranine on a bilayer lipid membrane (BLM) have been studied by measuring electrostatic potentials at the membrane–water interface. The dependence of the electrostatic potentials due to the adsorption of pyranine on its concentration in solution is described by the Gouy–Chapman theory assuming that anions with three charged groups are adsorbed on the membrane. No significant changes in the boundary potential were found when BLM with pyranine adsorbed on it was illuminated. Significant changes in the potential were observed if molecules of styryl dyes di-4-ANEPPS or RH-421 were adsorbed on BLM in addition to pyranine. The sign and magnitude of these changes correspond to the disappearance of the dipole potential created by styryl dye molecules on the BLM. The rate of potential disappearance was proportional to pyranine concentration and illumination intensity. The disappearance of the potential can be caused either by the binding of protons released from the pyranine molecule to the dye mo-lecules with their subsequent desorption from the BLM or by their destruction. Pyranine and styryl dye molecules can form complexes at the BLM boundary. This is evidenced by experiments in which the sum of the potential changes caused by their adsorption separately differed significantly from the change in the boundary potential during their simultaneous adsorption. The kinetics of the disappearance of the dipole potential of BLM with styryl dyes upon excitation of pyranine turned out to be similar to that observed earlier with another compound, 2-methoxy-5-nitrophenyl sodium sulfate, which releases protons at the membrane boundary upon illumination (Konstantinova et al., 2021. <i>Biochem. (Mosc.), Suppl. Series A: Membr. Cell Biol.</i> <b>15</b> (2), 142–146). This suggests that it is associated with the desorption of dye molecules from the membrane, due to the binding of protons released from excited pyranin molecules to them.</p>","PeriodicalId":484,"journal":{"name":"Biochemistry (Moscow), Supplement Series A: Membrane and Cell Biology","volume":"18 4","pages":"368 - 374"},"PeriodicalIF":1.1000,"publicationDate":"2025-01-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biochemistry (Moscow), Supplement Series A: Membrane and Cell Biology","FirstCategoryId":"2","ListUrlMain":"https://link.springer.com/article/10.1134/S1990747824700363","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Adsorption and photochemical reactions of pyranine on a bilayer lipid membrane (BLM) have been studied by measuring electrostatic potentials at the membrane–water interface. The dependence of the electrostatic potentials due to the adsorption of pyranine on its concentration in solution is described by the Gouy–Chapman theory assuming that anions with three charged groups are adsorbed on the membrane. No significant changes in the boundary potential were found when BLM with pyranine adsorbed on it was illuminated. Significant changes in the potential were observed if molecules of styryl dyes di-4-ANEPPS or RH-421 were adsorbed on BLM in addition to pyranine. The sign and magnitude of these changes correspond to the disappearance of the dipole potential created by styryl dye molecules on the BLM. The rate of potential disappearance was proportional to pyranine concentration and illumination intensity. The disappearance of the potential can be caused either by the binding of protons released from the pyranine molecule to the dye mo-lecules with their subsequent desorption from the BLM or by their destruction. Pyranine and styryl dye molecules can form complexes at the BLM boundary. This is evidenced by experiments in which the sum of the potential changes caused by their adsorption separately differed significantly from the change in the boundary potential during their simultaneous adsorption. The kinetics of the disappearance of the dipole potential of BLM with styryl dyes upon excitation of pyranine turned out to be similar to that observed earlier with another compound, 2-methoxy-5-nitrophenyl sodium sulfate, which releases protons at the membrane boundary upon illumination (Konstantinova et al., 2021. Biochem. (Mosc.), Suppl. Series A: Membr. Cell Biol. 15 (2), 142–146). This suggests that it is associated with the desorption of dye molecules from the membrane, due to the binding of protons released from excited pyranin molecules to them.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.40
自引率
0.00%
发文量
28
期刊介绍: Biochemistry (Moscow), Supplement Series A: Membrane and Cell Biology   is an international peer reviewed journal that publishes original articles on physical, chemical, and molecular mechanisms that underlie basic properties of biological membranes and mediate membrane-related cellular functions. The primary topics of the journal are membrane structure, mechanisms of membrane transport, bioenergetics and photobiology, intracellular signaling as well as membrane aspects of cell biology, immunology, and medicine. The journal is multidisciplinary and gives preference to those articles that employ a variety of experimental approaches, basically in biophysics but also in biochemistry, cytology, and molecular biology. The journal publishes articles that strive for unveiling membrane and cellular functions through innovative theoretical models and computer simulations.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信