ab initio study of structure and energy of Be2+⋅(CO)1−3 complexes

IF 1.7 4区 化学 Q3 CHEMISTRY, MULTIDISCIPLINARY
Jamal N Dawoud, A K Sallabi
{"title":"ab initio study of structure and energy of Be2+⋅(CO)1−3 complexes","authors":"Jamal N Dawoud,&nbsp;A K Sallabi","doi":"10.1007/s12039-024-02325-y","DOIUrl":null,"url":null,"abstract":"<div><p>Geometries and binding energies of Be<sup>2+</sup> ⋅ (CO)<sub>1–3</sub> complexes have been determined at the level of MP2/aug-cc-pVTZ method. Binding energy increases linearly with the number of CO molecules in these complexes. Our results show that the sequential bond dissociation energy follows the order: <span>\\({\\text{Be}}^{2+}\\cdot \\text{CO}\\)</span> <span>\\(&gt;\\)</span> <span>\\({\\text{Be}}^{2+}\\cdot {\\left(\\text{CO}\\right)}_{2}\\)</span> <span>\\(&gt;{\\text{Be}}^{2+}\\cdot {\\left(\\text{CO}\\right)}_{3}\\)</span>. This trend was well-explained in terms of ion–quadrupole interaction fluctuations. Detailed bond analysis confirmed that the strength of interaction between Be ion and CO molecule decreases with the number of CO molecules in these complexes. Our calculations show that the strength of interaction with these complexes is highly dependent on the CO bond polarization and stabilization energy of these complexes.</p><h3>Graphical abstract</h3><p>The sequential bond energies of the Be<sup>2+</sup> ·(CO)<sup>1,2,3</sup> complexes follow the trend: Be<sup>2+</sup> ·(CO) &gt; Be<sup>2+</sup> ·(CO)<sub>2</sub> &gt; Be<sup>2+</sup> ·(CO)<sub>3</sub> . The primary\ncause of the variations observed in the ion-quadruple attraction forces in these complexes is the strength of the σ-donation\nbetween the Be cation and CO molecules. The ion-induced dipole interaction energy in these complexes is insignificant.\n</p><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":616,"journal":{"name":"Journal of Chemical Sciences","volume":"137 1","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2025-01-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Chemical Sciences","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1007/s12039-024-02325-y","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Geometries and binding energies of Be2+ ⋅ (CO)1–3 complexes have been determined at the level of MP2/aug-cc-pVTZ method. Binding energy increases linearly with the number of CO molecules in these complexes. Our results show that the sequential bond dissociation energy follows the order: \({\text{Be}}^{2+}\cdot \text{CO}\) \(>\) \({\text{Be}}^{2+}\cdot {\left(\text{CO}\right)}_{2}\) \(>{\text{Be}}^{2+}\cdot {\left(\text{CO}\right)}_{3}\). This trend was well-explained in terms of ion–quadrupole interaction fluctuations. Detailed bond analysis confirmed that the strength of interaction between Be ion and CO molecule decreases with the number of CO molecules in these complexes. Our calculations show that the strength of interaction with these complexes is highly dependent on the CO bond polarization and stabilization energy of these complexes.

Graphical abstract

The sequential bond energies of the Be2+ ·(CO)1,2,3 complexes follow the trend: Be2+ ·(CO) > Be2+ ·(CO)2 > Be2+ ·(CO)3 . The primary cause of the variations observed in the ion-quadruple attraction forces in these complexes is the strength of the σ-donation between the Be cation and CO molecules. The ion-induced dipole interaction energy in these complexes is insignificant.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Chemical Sciences
Journal of Chemical Sciences CHEMISTRY, MULTIDISCIPLINARY-
CiteScore
3.10
自引率
5.90%
发文量
107
审稿时长
1 months
期刊介绍: Journal of Chemical Sciences is a monthly journal published by the Indian Academy of Sciences. It formed part of the original Proceedings of the Indian Academy of Sciences – Part A, started by the Nobel Laureate Prof C V Raman in 1934, that was split in 1978 into three separate journals. It was renamed as Journal of Chemical Sciences in 2004. The journal publishes original research articles and rapid communications, covering all areas of chemical sciences. A significant feature of the journal is its special issues, brought out from time to time, devoted to conference symposia/proceedings in frontier areas of the subject, held not only in India but also in other countries.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信