Applications of X-ray fluorescence microscopy with synchrotron radiation: From biology to materials science

IF 2.8 3区 物理与天体物理 Q3 CHEMISTRY, PHYSICAL
Simone Sala, Karin Rengefors, Jenni Kiventerä, Minna Patanen, Lina Gefors, Christian Werdinius, Sofia Winge, Karin Broberg, Sebastian Kalbfleisch, Kajsa Sigfridsson Clauss
{"title":"Applications of X-ray fluorescence microscopy with synchrotron radiation: From biology to materials science","authors":"Simone Sala, Karin Rengefors, Jenni Kiventerä, Minna Patanen, Lina Gefors, Christian Werdinius, Sofia Winge, Karin Broberg, Sebastian Kalbfleisch, Kajsa Sigfridsson Clauss","doi":"10.1016/j.radphyschem.2024.112491","DOIUrl":null,"url":null,"abstract":"X-ray fluorescence emission spectroscopy is a powerful tool to gain chemical information on a wide variety of samples. Its combination with focused X-ray beams and translation stages enables X-ray fluorescence microscopy, generating quantitative distribution maps for sets of chemical elements, depending on incident photon energy and detector specifications. The use of synchrotron radiation for X-ray fluorescence microscopy has led to unprecedented performance: with the advent of 4th generation synchrotron facilities such as MAX IV, the increase of the achievable incident photon flux has made higher sensitivity and measuring speed possible, while new nanofocus capabilities have enabled nanoscale spatial resolution. Here, an overview of recent and ongoing research is presented from selected two-dimensional X-ray fluorescence microscopy experiments carried out at NanoMAX, the hard X-ray nanoprobe beamline at MAX IV. Results showcase the technique's versatility, as it is applied to microalgae, human dental tissue and engineered materials.","PeriodicalId":20861,"journal":{"name":"Radiation Physics and Chemistry","volume":"2 1","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2024-12-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Radiation Physics and Chemistry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1016/j.radphyschem.2024.112491","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

X-ray fluorescence emission spectroscopy is a powerful tool to gain chemical information on a wide variety of samples. Its combination with focused X-ray beams and translation stages enables X-ray fluorescence microscopy, generating quantitative distribution maps for sets of chemical elements, depending on incident photon energy and detector specifications. The use of synchrotron radiation for X-ray fluorescence microscopy has led to unprecedented performance: with the advent of 4th generation synchrotron facilities such as MAX IV, the increase of the achievable incident photon flux has made higher sensitivity and measuring speed possible, while new nanofocus capabilities have enabled nanoscale spatial resolution. Here, an overview of recent and ongoing research is presented from selected two-dimensional X-ray fluorescence microscopy experiments carried out at NanoMAX, the hard X-ray nanoprobe beamline at MAX IV. Results showcase the technique's versatility, as it is applied to microalgae, human dental tissue and engineered materials.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Radiation Physics and Chemistry
Radiation Physics and Chemistry 化学-核科学技术
CiteScore
5.60
自引率
17.20%
发文量
574
审稿时长
12 weeks
期刊介绍: Radiation Physics and Chemistry is a multidisciplinary journal that provides a medium for publication of substantial and original papers, reviews, and short communications which focus on research and developments involving ionizing radiation in radiation physics, radiation chemistry and radiation processing. The journal aims to publish papers with significance to an international audience, containing substantial novelty and scientific impact. The Editors reserve the rights to reject, with or without external review, papers that do not meet these criteria. This could include papers that are very similar to previous publications, only with changed target substrates, employed materials, analyzed sites and experimental methods, report results without presenting new insights and/or hypothesis testing, or do not focus on the radiation effects.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信