{"title":"Microalgal-based urea wastewater treatment with p-Hydroxybenzoic acid enhances resource recovery and mitigates biological risks from Bisphenol A","authors":"Zhenhao Zhao, Jingjing Jiang, Dandan Zhou, Shuangshi Dong","doi":"10.1016/j.watres.2024.123065","DOIUrl":null,"url":null,"abstract":"Efficient nutrient recovery from source-separated urine is vital for wastewater treatment, with microalgae as a promising solution. However, bisphenol A (BPA) in urine can hinder microalgal resource recovery and pose water quality risks. The role of plant hormones in enhancing microalgal growth and pollutant removal is known, but their impact on BPA-laden urine treatment is not well-studied. Here, we explored para-hydroxybenzoic acid (p-HBA) in <ce:italic>Chlorella</ce:italic> for treating diluted urine with BPA. p-HBA boosted photosynthesis and glycolysis, increasing pyruvate and ATP production and enhancing microalgal growth by 45.7 %. It also optimized nitrogen metabolism, raising urea and nitrogen consumption by 35 % and 65 %, respectively, and protein content by 23.1 %. Enhanced oxidase and transferase expression improves BPA degradation by 40 %. Additionally, ARGs and plasmid abundance decreased by 24.3 % and 37.5 %, respectively, reducing the risk of ARG dissemination. This study shows that p-HBA significantly improves the efficiency and safety of urine resource recovery, offering a promising strategy for sustainable wastewater treatment.","PeriodicalId":443,"journal":{"name":"Water Research","volume":"41 1","pages":""},"PeriodicalIF":11.4000,"publicationDate":"2025-01-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Water Research","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1016/j.watres.2024.123065","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0
Abstract
Efficient nutrient recovery from source-separated urine is vital for wastewater treatment, with microalgae as a promising solution. However, bisphenol A (BPA) in urine can hinder microalgal resource recovery and pose water quality risks. The role of plant hormones in enhancing microalgal growth and pollutant removal is known, but their impact on BPA-laden urine treatment is not well-studied. Here, we explored para-hydroxybenzoic acid (p-HBA) in Chlorella for treating diluted urine with BPA. p-HBA boosted photosynthesis and glycolysis, increasing pyruvate and ATP production and enhancing microalgal growth by 45.7 %. It also optimized nitrogen metabolism, raising urea and nitrogen consumption by 35 % and 65 %, respectively, and protein content by 23.1 %. Enhanced oxidase and transferase expression improves BPA degradation by 40 %. Additionally, ARGs and plasmid abundance decreased by 24.3 % and 37.5 %, respectively, reducing the risk of ARG dissemination. This study shows that p-HBA significantly improves the efficiency and safety of urine resource recovery, offering a promising strategy for sustainable wastewater treatment.
期刊介绍:
Water Research, along with its open access companion journal Water Research X, serves as a platform for publishing original research papers covering various aspects of the science and technology related to the anthropogenic water cycle, water quality, and its management worldwide. The audience targeted by the journal comprises biologists, chemical engineers, chemists, civil engineers, environmental engineers, limnologists, and microbiologists. The scope of the journal include:
•Treatment processes for water and wastewaters (municipal, agricultural, industrial, and on-site treatment), including resource recovery and residuals management;
•Urban hydrology including sewer systems, stormwater management, and green infrastructure;
•Drinking water treatment and distribution;
•Potable and non-potable water reuse;
•Sanitation, public health, and risk assessment;
•Anaerobic digestion, solid and hazardous waste management, including source characterization and the effects and control of leachates and gaseous emissions;
•Contaminants (chemical, microbial, anthropogenic particles such as nanoparticles or microplastics) and related water quality sensing, monitoring, fate, and assessment;
•Anthropogenic impacts on inland, tidal, coastal and urban waters, focusing on surface and ground waters, and point and non-point sources of pollution;
•Environmental restoration, linked to surface water, groundwater and groundwater remediation;
•Analysis of the interfaces between sediments and water, and between water and atmosphere, focusing specifically on anthropogenic impacts;
•Mathematical modelling, systems analysis, machine learning, and beneficial use of big data related to the anthropogenic water cycle;
•Socio-economic, policy, and regulations studies.