Understanding the promotional role of Pd in oxidative alcohol coupling reactions over dilute PdAu alloys

IF 6.5 1区 化学 Q2 CHEMISTRY, PHYSICAL
Oluwatofunmi O. Akinsanya, Deep M. Patel, Christopher R. O’Connor, Marta Perxés Perich, Jessi E.S. van der Hoeven, Christian Reece, Luke T. Roling, Nathaniel M. Eagan
{"title":"Understanding the promotional role of Pd in oxidative alcohol coupling reactions over dilute PdAu alloys","authors":"Oluwatofunmi O. Akinsanya, Deep M. Patel, Christopher R. O’Connor, Marta Perxés Perich, Jessi E.S. van der Hoeven, Christian Reece, Luke T. Roling, Nathaniel M. Eagan","doi":"10.1016/j.jcat.2025.115942","DOIUrl":null,"url":null,"abstract":"Oxidative coupling reactions enable biomass-derived oxygenates to serve as sustainable platform molecules for a wide range of high-value chemicals. These catalytic reactions can be selectively triggered over alloys wherein a highly active dopant metal such as Pd is diluted into a sea of highly selective host metal atoms such as Au. Here, a range of supported Pd<sub>1</sub>Au<sub>x</sub> (x = 5–200) alloy nanoparticles were synthesized using a sequential reduction method with colloidal Au to achieve a high degree of compositional control and particle size uniformity. The promotional role of Pd was examined in the oxidation of ethanol to yield acetaldehyde and the coupling product ethyl acetate. Reactivity trends indicate that both the overall rate of ethanol oxidation and the selectivity toward coupling increase with Pd doping. Rate order and activation energy trends further suggest that the promotional role of Pd does not likely originate from simple O<sub>2</sub> dissociation and spillover but rather from the stabilization of alkoxides at Pd-Au interfaces, disproportionately increasing coupling <em>vs</em> simple oxidation. Infrared spectroscopy and density functional theory calculations offer further insights into Pd microstructures in the presence of various key adsorbates, suggesting that Pd can lend this promotion in an isolated state. While this state is generally unstable in the surface due to preferences for segregation into the bulk, oxygen and pathway intermediates may aid in stabilizing surface structures. These findings lay groundwork to explain selectivity and activity control in a much wider range of oxidative functionalizations and to guide further catalyst development.","PeriodicalId":346,"journal":{"name":"Journal of Catalysis","volume":"76 1","pages":""},"PeriodicalIF":6.5000,"publicationDate":"2025-01-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Catalysis","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1016/j.jcat.2025.115942","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Oxidative coupling reactions enable biomass-derived oxygenates to serve as sustainable platform molecules for a wide range of high-value chemicals. These catalytic reactions can be selectively triggered over alloys wherein a highly active dopant metal such as Pd is diluted into a sea of highly selective host metal atoms such as Au. Here, a range of supported Pd1Aux (x = 5–200) alloy nanoparticles were synthesized using a sequential reduction method with colloidal Au to achieve a high degree of compositional control and particle size uniformity. The promotional role of Pd was examined in the oxidation of ethanol to yield acetaldehyde and the coupling product ethyl acetate. Reactivity trends indicate that both the overall rate of ethanol oxidation and the selectivity toward coupling increase with Pd doping. Rate order and activation energy trends further suggest that the promotional role of Pd does not likely originate from simple O2 dissociation and spillover but rather from the stabilization of alkoxides at Pd-Au interfaces, disproportionately increasing coupling vs simple oxidation. Infrared spectroscopy and density functional theory calculations offer further insights into Pd microstructures in the presence of various key adsorbates, suggesting that Pd can lend this promotion in an isolated state. While this state is generally unstable in the surface due to preferences for segregation into the bulk, oxygen and pathway intermediates may aid in stabilizing surface structures. These findings lay groundwork to explain selectivity and activity control in a much wider range of oxidative functionalizations and to guide further catalyst development.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Catalysis
Journal of Catalysis 工程技术-工程:化工
CiteScore
12.30
自引率
5.50%
发文量
447
审稿时长
31 days
期刊介绍: The Journal of Catalysis publishes scholarly articles on both heterogeneous and homogeneous catalysis, covering a wide range of chemical transformations. These include various types of catalysis, such as those mediated by photons, plasmons, and electrons. The focus of the studies is to understand the relationship between catalytic function and the underlying chemical properties of surfaces and metal complexes. The articles in the journal offer innovative concepts and explore the synthesis and kinetics of inorganic solids and homogeneous complexes. Furthermore, they discuss spectroscopic techniques for characterizing catalysts, investigate the interaction of probes and reacting species with catalysts, and employ theoretical methods. The research presented in the journal should have direct relevance to the field of catalytic processes, addressing either fundamental aspects or applications of catalysis.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信