Repurposing FDA-approved drugs to target G-quadruplexes in breast cancer

IF 6 2区 医学 Q1 CHEMISTRY, MEDICINAL
Federica Moraca, Valentina Arciuolo, Simona Marzano, Fabiana Napolitano, Giuliano Castellano, Federica D’Aria, Anna Di Porzio, Laura Landolfi, Bruno Catalanotti, Antonio Randazzo, Bruno Pagano, Anna Maria Malfitano, Jussara Amato
{"title":"Repurposing FDA-approved drugs to target G-quadruplexes in breast cancer","authors":"Federica Moraca, Valentina Arciuolo, Simona Marzano, Fabiana Napolitano, Giuliano Castellano, Federica D’Aria, Anna Di Porzio, Laura Landolfi, Bruno Catalanotti, Antonio Randazzo, Bruno Pagano, Anna Maria Malfitano, Jussara Amato","doi":"10.1016/j.ejmech.2025.117245","DOIUrl":null,"url":null,"abstract":"Breast cancer, a leading cause of cancer-related mortality in women, is characterized by genomic instability and aberrant gene expression, often influenced by noncanonical nucleic acid structures such as G-quadruplexes (G4s). These structures, commonly found in the promoter regions and 5’-untranslated RNA sequences of several oncogenes, play crucial roles in regulating transcription and translation. Stabilizing these G4 structures offers a promising therapeutic strategy for targeting key oncogenic pathways. In this study, we employed a drug repurposing approach to identify FDA-approved drugs capable of binding and stabilizing G4s in breast cancer-related genes. Using ligand-based virtual screening and biophysical methods, we identified several promising compounds, such as azelastine, belotecan, and irinotecan, as effective G4 binders, with significant antiproliferative effects in breast cancer cell lines. Notably, belotecan and irinotecan exhibited a synergistic mechanism, combining G4 stabilization with their established topoisomerase I inhibition activity to enhance cytotoxicity in cancer cells. Our findings support the therapeutic potential of G4 stabilization in breast cancer, validate drug repurposing as an efficient strategy to identify G4-targeting drugs, and highlight how combining G4 stabilization with other established drug activities may improve anticancer efficacy.","PeriodicalId":314,"journal":{"name":"European Journal of Medicinal Chemistry","volume":"21 1","pages":""},"PeriodicalIF":6.0000,"publicationDate":"2025-01-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Medicinal Chemistry","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.ejmech.2025.117245","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0

Abstract

Breast cancer, a leading cause of cancer-related mortality in women, is characterized by genomic instability and aberrant gene expression, often influenced by noncanonical nucleic acid structures such as G-quadruplexes (G4s). These structures, commonly found in the promoter regions and 5’-untranslated RNA sequences of several oncogenes, play crucial roles in regulating transcription and translation. Stabilizing these G4 structures offers a promising therapeutic strategy for targeting key oncogenic pathways. In this study, we employed a drug repurposing approach to identify FDA-approved drugs capable of binding and stabilizing G4s in breast cancer-related genes. Using ligand-based virtual screening and biophysical methods, we identified several promising compounds, such as azelastine, belotecan, and irinotecan, as effective G4 binders, with significant antiproliferative effects in breast cancer cell lines. Notably, belotecan and irinotecan exhibited a synergistic mechanism, combining G4 stabilization with their established topoisomerase I inhibition activity to enhance cytotoxicity in cancer cells. Our findings support the therapeutic potential of G4 stabilization in breast cancer, validate drug repurposing as an efficient strategy to identify G4-targeting drugs, and highlight how combining G4 stabilization with other established drug activities may improve anticancer efficacy.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
11.70
自引率
9.00%
发文量
863
审稿时长
29 days
期刊介绍: The European Journal of Medicinal Chemistry is a global journal that publishes studies on all aspects of medicinal chemistry. It provides a medium for publication of original papers and also welcomes critical review papers. A typical paper would report on the organic synthesis, characterization and pharmacological evaluation of compounds. Other topics of interest are drug design, QSAR, molecular modeling, drug-receptor interactions, molecular aspects of drug metabolism, prodrug synthesis and drug targeting. The journal expects manuscripts to present the rational for a study, provide insight into the design of compounds or understanding of mechanism, or clarify the targets.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信