Xiaodong Su, Lei Zhang, Yiyang Sun, Yanbo Wu, Jianrong Ren, Shengru Wu, Xinjian Lei, Jun Zhang, Dangdang Wang, Hao Ren, Junhu Yao
{"title":"Net energy of grains for dairy goats differed with processing methods and grain types","authors":"Xiaodong Su, Lei Zhang, Yiyang Sun, Yanbo Wu, Jianrong Ren, Shengru Wu, Xinjian Lei, Jun Zhang, Dangdang Wang, Hao Ren, Junhu Yao","doi":"10.1186/s40104-024-01136-y","DOIUrl":null,"url":null,"abstract":"The diverse types and processing methods of grains intricately influence the sites and digestibility of starch digestion, thereby impacting energy utilization. This study aimed to explore the impact of grain variety and processing methods on the net energy (NE) in dairy goats, analyzing these effects at the level of nutrient digestion and metabolism. Eighteen castrated Guanzhong dairy goats (44.25 ± 3.59 kg BW) were randomly divided into 3 groups, each consisting of 6 replicates. The substitution method was employed to determine the NE values of the dry-rolled corn (DRC), dry-rolled wheat (DRW) or steam-flaked corn (SFC, 360 g/L). Briefly, two phases were performed. Throughout the basal phase, all goats were fed the same basal diet. In the substitution phase, 30% of the basal diet was replaced with DRC, DRW and SFC, respectively. In this study, the NE values of the DRC, DRW and SFC were 7.65, 7.54 and 7.44 MJ/kg DM, respectively. Compared to the DRC group, the DRW group showed increased digestibility of starch and crude protein (CP). Similarly, the SFC group exhibited increased organic matter (OM) and starch digestibility and a trend towards higher dry matter (DM) digestibility, reduced fecal OM and starch content. Additionally, fecal volatile fatty acid (VFA) concentrations decreased in goats fed SFC. Correspondingly, digestible energy (DE) in the DRW and SFC groups tended to be higher than in the DRC group. DRW increased total VFA concentration compared to DRC, while SFC increased the proportion of propionate and decreased the acetate-to-propionate ratio in the rumen. Both the DRW and SFC diets elevated serum glucose levels. Furthermore, heat increment (HI) and gaseous energy (GasE) related to fermentation were significantly higher in the DRW and SFC groups compared to the DRC group. Our findings indicated that DRW and SFC increased rumen starch fermentation in goats, thereby improving total tract starch digestion and DE. However, DRW and SFC failed to improve NE value due to increased heat and gas energy production from fermentation. Therefore, excessively refined grains processing in the diet of dairy goats does not effectively improve energy efficiency.","PeriodicalId":14928,"journal":{"name":"Journal of Animal Science and Biotechnology","volume":"37 1","pages":""},"PeriodicalIF":7.0000,"publicationDate":"2025-01-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Animal Science and Biotechnology","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1186/s40104-024-01136-y","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Agricultural and Biological Sciences","Score":null,"Total":0}
引用次数: 0
Abstract
The diverse types and processing methods of grains intricately influence the sites and digestibility of starch digestion, thereby impacting energy utilization. This study aimed to explore the impact of grain variety and processing methods on the net energy (NE) in dairy goats, analyzing these effects at the level of nutrient digestion and metabolism. Eighteen castrated Guanzhong dairy goats (44.25 ± 3.59 kg BW) were randomly divided into 3 groups, each consisting of 6 replicates. The substitution method was employed to determine the NE values of the dry-rolled corn (DRC), dry-rolled wheat (DRW) or steam-flaked corn (SFC, 360 g/L). Briefly, two phases were performed. Throughout the basal phase, all goats were fed the same basal diet. In the substitution phase, 30% of the basal diet was replaced with DRC, DRW and SFC, respectively. In this study, the NE values of the DRC, DRW and SFC were 7.65, 7.54 and 7.44 MJ/kg DM, respectively. Compared to the DRC group, the DRW group showed increased digestibility of starch and crude protein (CP). Similarly, the SFC group exhibited increased organic matter (OM) and starch digestibility and a trend towards higher dry matter (DM) digestibility, reduced fecal OM and starch content. Additionally, fecal volatile fatty acid (VFA) concentrations decreased in goats fed SFC. Correspondingly, digestible energy (DE) in the DRW and SFC groups tended to be higher than in the DRC group. DRW increased total VFA concentration compared to DRC, while SFC increased the proportion of propionate and decreased the acetate-to-propionate ratio in the rumen. Both the DRW and SFC diets elevated serum glucose levels. Furthermore, heat increment (HI) and gaseous energy (GasE) related to fermentation were significantly higher in the DRW and SFC groups compared to the DRC group. Our findings indicated that DRW and SFC increased rumen starch fermentation in goats, thereby improving total tract starch digestion and DE. However, DRW and SFC failed to improve NE value due to increased heat and gas energy production from fermentation. Therefore, excessively refined grains processing in the diet of dairy goats does not effectively improve energy efficiency.
期刊介绍:
Journal of Animal Science and Biotechnology is an open access, peer-reviewed journal that encompasses all aspects of animal science and biotechnology. That includes domestic animal production, animal genetics and breeding, animal reproduction and physiology, animal nutrition and biochemistry, feed processing technology and bioevaluation, animal biotechnology, and meat science.