Jianqing Liu, Thinh Le, Tingxiang Ji, Ruozhou Yu, Demitry Farfurnik, Greg Byrd, Daniel Stancil
{"title":"The road to quantum internet: Progress in quantum network testbeds and major demonstrations","authors":"Jianqing Liu, Thinh Le, Tingxiang Ji, Ruozhou Yu, Demitry Farfurnik, Greg Byrd, Daniel Stancil","doi":"10.1016/j.pquantelec.2024.100551","DOIUrl":null,"url":null,"abstract":"The quantum internet is on the cusp of a revolution. While it shares the same purpose as the classical internet — connecting devices and transmitting information, the underlying principle of quantum physics makes the quantum internet a disruptive technology that will enable services unmatched by the classical internet. The quantum internet design has moved beyond theory. The past decade has seen a surge of efforts among researchers worldwide in building quantum network testbeds, a crucial stepping stone toward the quantum internet. In this review paper, we will summarize recent progress on quantum network testbeds, highlighting their major demonstrations and achievements. This progress report is the first of its kind in the literature, offering a holistic view of past regional efforts and prompting the community to assess our current position. Moreover, this paper will discuss open challenges and envision a collaborative pathway forward for the development of the quantum internet.","PeriodicalId":414,"journal":{"name":"Progress in Quantum Electronics","volume":"26 1","pages":""},"PeriodicalIF":7.4000,"publicationDate":"2024-12-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Progress in Quantum Electronics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1016/j.pquantelec.2024.100551","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
The quantum internet is on the cusp of a revolution. While it shares the same purpose as the classical internet — connecting devices and transmitting information, the underlying principle of quantum physics makes the quantum internet a disruptive technology that will enable services unmatched by the classical internet. The quantum internet design has moved beyond theory. The past decade has seen a surge of efforts among researchers worldwide in building quantum network testbeds, a crucial stepping stone toward the quantum internet. In this review paper, we will summarize recent progress on quantum network testbeds, highlighting their major demonstrations and achievements. This progress report is the first of its kind in the literature, offering a holistic view of past regional efforts and prompting the community to assess our current position. Moreover, this paper will discuss open challenges and envision a collaborative pathway forward for the development of the quantum internet.
期刊介绍:
Progress in Quantum Electronics, established in 1969, is an esteemed international review journal dedicated to sharing cutting-edge topics in quantum electronics and its applications. The journal disseminates papers covering theoretical and experimental aspects of contemporary research, including advances in physics, technology, and engineering relevant to quantum electronics. It also encourages interdisciplinary research, welcoming papers that contribute new knowledge in areas such as bio and nano-related work.