{"title":"A semantic framework for neurosymbolic computation","authors":"Simon Odense, Artur d'Avila Garcez","doi":"10.1016/j.artint.2024.104273","DOIUrl":null,"url":null,"abstract":"The field of neurosymbolic AI aims to benefit from the combination of neural networks and symbolic systems. A cornerstone of the field is the translation or <ce:italic>encoding</ce:italic> of symbolic knowledge into neural networks. Although many neurosymbolic methods and approaches have been proposed, and with a large increase in recent years, no common definition of encoding exists that can enable a precise, theoretical comparison of neurosymbolic methods. This paper addresses this problem by introducing a semantic framework for neurosymbolic AI. We start by providing a formal definition of <ce:italic>semantic encoding</ce:italic>, specifying the components and conditions under which a knowledge-base can be encoded correctly by a neural network. We then show that many neurosymbolic approaches are accounted for by this definition. We provide a number of examples and correspondence proofs applying the proposed framework to the neural encoding of various forms of knowledge representation. Many, at first sight disparate, neurosymbolic methods, are shown to fall within the proposed formalization. This is expected to provide guidance to future neurosymbolic encodings by placing them in the broader context of semantic encodings of entire families of existing neurosymbolic systems. The paper hopes to help initiate a discussion around the provision of a theory for neurosymbolic AI and a semantics for deep learning.","PeriodicalId":8434,"journal":{"name":"Artificial Intelligence","volume":"23 1","pages":""},"PeriodicalIF":5.1000,"publicationDate":"2024-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Artificial Intelligence","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1016/j.artint.2024.104273","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
The field of neurosymbolic AI aims to benefit from the combination of neural networks and symbolic systems. A cornerstone of the field is the translation or encoding of symbolic knowledge into neural networks. Although many neurosymbolic methods and approaches have been proposed, and with a large increase in recent years, no common definition of encoding exists that can enable a precise, theoretical comparison of neurosymbolic methods. This paper addresses this problem by introducing a semantic framework for neurosymbolic AI. We start by providing a formal definition of semantic encoding, specifying the components and conditions under which a knowledge-base can be encoded correctly by a neural network. We then show that many neurosymbolic approaches are accounted for by this definition. We provide a number of examples and correspondence proofs applying the proposed framework to the neural encoding of various forms of knowledge representation. Many, at first sight disparate, neurosymbolic methods, are shown to fall within the proposed formalization. This is expected to provide guidance to future neurosymbolic encodings by placing them in the broader context of semantic encodings of entire families of existing neurosymbolic systems. The paper hopes to help initiate a discussion around the provision of a theory for neurosymbolic AI and a semantics for deep learning.
期刊介绍:
The Journal of Artificial Intelligence (AIJ) welcomes papers covering a broad spectrum of AI topics, including cognition, automated reasoning, computer vision, machine learning, and more. Papers should demonstrate advancements in AI and propose innovative approaches to AI problems. Additionally, the journal accepts papers describing AI applications, focusing on how new methods enhance performance rather than reiterating conventional approaches. In addition to regular papers, AIJ also accepts Research Notes, Research Field Reviews, Position Papers, Book Reviews, and summary papers on AI challenges and competitions.