Modified impregnation combined with thermal treatment to boost Au-Ti catalytic hydro-oxidation of propylene

IF 4.1 2区 工程技术 Q2 ENGINEERING, CHEMICAL
Zhihua Zhang, Kesheng Xu, Yueqiang Cao, Xuezhi Duan, Xinggui Zhou
{"title":"Modified impregnation combined with thermal treatment to boost Au-Ti catalytic hydro-oxidation of propylene","authors":"Zhihua Zhang, Kesheng Xu, Yueqiang Cao, Xuezhi Duan, Xinggui Zhou","doi":"10.1016/j.ces.2025.121184","DOIUrl":null,"url":null,"abstract":"Designing highly efficient Au-Ti bifunctional catalysts is pivotal to the hydro-oxidation of propylene to propylene oxide (PO). Herein, we report that the catalytic performance of Au/uncalcined TS-1 (i.e., TS-1-B) catalyst prepared via impregnation method using Na<sub>3</sub>Au(S<sub>2</sub>O<sub>3</sub>)<sub>2</sub> as precursor can be remarkably enhanced by tuning the properties of active sites through thermal treatment. Increasing thermal treatment temperature favors the decomposition of sulfur species adsorbed on the surface of Au nanoparticles and the TPA<sup>+</sup> templates adsorbed on the external surface of the catalyst, thereby exposing more Au and Ti sites, while the dispersion of Au particles and surface hydrophobicity are inferior at elevated thermal treatment temperature. Consequently, PO formation rate exhibits a volcano-shaped relationship with thermal treatment temperature. Importantly, the as-obtained 0.035 wt% Au/TS-1-B catalyst displays a hydrogen efficiency of up 62 % in addition to promising PO selectivity (95 %) and PO formation rate (155 g<sub>PO</sub>·h<sup>−1</sup>·kg<sub>cat</sub><sup>-1</sup>) with no significant decline over 140 h.","PeriodicalId":271,"journal":{"name":"Chemical Engineering Science","volume":"97 1","pages":""},"PeriodicalIF":4.1000,"publicationDate":"2025-01-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical Engineering Science","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1016/j.ces.2025.121184","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Designing highly efficient Au-Ti bifunctional catalysts is pivotal to the hydro-oxidation of propylene to propylene oxide (PO). Herein, we report that the catalytic performance of Au/uncalcined TS-1 (i.e., TS-1-B) catalyst prepared via impregnation method using Na3Au(S2O3)2 as precursor can be remarkably enhanced by tuning the properties of active sites through thermal treatment. Increasing thermal treatment temperature favors the decomposition of sulfur species adsorbed on the surface of Au nanoparticles and the TPA+ templates adsorbed on the external surface of the catalyst, thereby exposing more Au and Ti sites, while the dispersion of Au particles and surface hydrophobicity are inferior at elevated thermal treatment temperature. Consequently, PO formation rate exhibits a volcano-shaped relationship with thermal treatment temperature. Importantly, the as-obtained 0.035 wt% Au/TS-1-B catalyst displays a hydrogen efficiency of up 62 % in addition to promising PO selectivity (95 %) and PO formation rate (155 gPO·h−1·kgcat-1) with no significant decline over 140 h.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Chemical Engineering Science
Chemical Engineering Science 工程技术-工程:化工
CiteScore
7.50
自引率
8.50%
发文量
1025
审稿时长
50 days
期刊介绍: Chemical engineering enables the transformation of natural resources and energy into useful products for society. It draws on and applies natural sciences, mathematics and economics, and has developed fundamental engineering science that underpins the discipline. Chemical Engineering Science (CES) has been publishing papers on the fundamentals of chemical engineering since 1951. CES is the platform where the most significant advances in the discipline have ever since been published. Chemical Engineering Science has accompanied and sustained chemical engineering through its development into the vibrant and broad scientific discipline it is today.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信