Investigating the Current-Carrying Friction Mechanism of n-Type and p-Type Two-Dimensional TMD under a Positive Electric Field

IF 8.3 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Guowei Huang, Ruichao Wang, Wenchao Wu, Wangle Xue, Peng Wang, Hongli Li, Zhenbin Gong
{"title":"Investigating the Current-Carrying Friction Mechanism of n-Type and p-Type Two-Dimensional TMD under a Positive Electric Field","authors":"Guowei Huang, Ruichao Wang, Wenchao Wu, Wangle Xue, Peng Wang, Hongli Li, Zhenbin Gong","doi":"10.1021/acsami.4c16577","DOIUrl":null,"url":null,"abstract":"Nanofriction plays an important role in the performance and lifetime of n-type or p-type TMD-based semiconductor nanodevices. However, the mechanism of nanofriction in n-type and p-type TMD semiconductors under an electric field is still blurry. In this paper, monolayers of n-MoSe<sub>2</sub> and p-WSe<sub>2</sub> materials were prepared by chemical vapor deposition (CVD), and their nanofriction behavior under positive electric field was investigated. Atomic force microscopy (AFM) was used to analyze the nanofriction by the positive voltage applied through the needle tip: both the friction and the friction coefficient of MoSe<sub>2</sub> increased with the increase of the applied voltage, while the friction and the friction coefficient of WSe<sub>2</sub> decreased with the increase of the applied voltage. As the applied voltage increases, the friction force and energy dissipation exhibit corresponding trends in relation to the surface potential. The accumulation and dissipation of carriers represent significant factors influencing friction change. The diverse types of carriers give rise to variations in the friction laws. Our experiments have revealed the differences and mechanisms of friction in TMD materials dominated by different carrier types at positive voltages. It provides guidance for the application and modulation of n- and p-type two-dimensional semiconductor materials in the field of friction.","PeriodicalId":5,"journal":{"name":"ACS Applied Materials & Interfaces","volume":"20 1","pages":""},"PeriodicalIF":8.3000,"publicationDate":"2025-01-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Materials & Interfaces","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acsami.4c16577","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Nanofriction plays an important role in the performance and lifetime of n-type or p-type TMD-based semiconductor nanodevices. However, the mechanism of nanofriction in n-type and p-type TMD semiconductors under an electric field is still blurry. In this paper, monolayers of n-MoSe2 and p-WSe2 materials were prepared by chemical vapor deposition (CVD), and their nanofriction behavior under positive electric field was investigated. Atomic force microscopy (AFM) was used to analyze the nanofriction by the positive voltage applied through the needle tip: both the friction and the friction coefficient of MoSe2 increased with the increase of the applied voltage, while the friction and the friction coefficient of WSe2 decreased with the increase of the applied voltage. As the applied voltage increases, the friction force and energy dissipation exhibit corresponding trends in relation to the surface potential. The accumulation and dissipation of carriers represent significant factors influencing friction change. The diverse types of carriers give rise to variations in the friction laws. Our experiments have revealed the differences and mechanisms of friction in TMD materials dominated by different carrier types at positive voltages. It provides guidance for the application and modulation of n- and p-type two-dimensional semiconductor materials in the field of friction.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Applied Materials & Interfaces
ACS Applied Materials & Interfaces 工程技术-材料科学:综合
CiteScore
16.00
自引率
6.30%
发文量
4978
审稿时长
1.8 months
期刊介绍: ACS Applied Materials & Interfaces is a leading interdisciplinary journal that brings together chemists, engineers, physicists, and biologists to explore the development and utilization of newly-discovered materials and interfacial processes for specific applications. Our journal has experienced remarkable growth since its establishment in 2009, both in terms of the number of articles published and the impact of the research showcased. We are proud to foster a truly global community, with the majority of published articles originating from outside the United States, reflecting the rapid growth of applied research worldwide.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信