A Zero-gap Electrolyzer Enables Supporting Electrolyte-free Seawater Splitting for Energy-saving Hydrogen Production

IF 16.1 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Yongwen Ren, Faying Fan, Shu Zhang, Zhaohan Liu, Yaojian Zhang, Fu Sun, Jiedong Li, Lin Chen, Zhe Wang, Jingwen Zhao, Jieshan Qiu, Guanglei Cui
{"title":"A Zero-gap Electrolyzer Enables Supporting Electrolyte-free Seawater Splitting for Energy-saving Hydrogen Production","authors":"Yongwen Ren, Faying Fan, Shu Zhang, Zhaohan Liu, Yaojian Zhang, Fu Sun, Jiedong Li, Lin Chen, Zhe Wang, Jingwen Zhao, Jieshan Qiu, Guanglei Cui","doi":"10.1002/anie.202422840","DOIUrl":null,"url":null,"abstract":"Membrane-assisted direct seawater splitting (DSS) technologies are actively studied as a promising route to produce green hydrogen (H2), whereas the indispensable use of supporting electrolytes that help to extract water and provide electrochemically-accelerated reaction media results in a severe energy penalty, consuming up to 12.5% of energy input when using a typical KOH electrolyte. We bypass this issue by designing a zero-gap electrolyzer configuration based on the integration of cation exchange membrane and bipolar membrane assemblies, which protects stable DSS operation against the precipitates and corrosion in the absence of additional supporting electrolytes. The heterolytic water dissociation function of the bipolar membrane in-situ creates an asymmetric acidic-alkaline environment, kinetically facilitating H2 and O2 evolution reactions. When working in natural seawater without any chemical inputs, this zero-gap electrolyzer sustains nearly 100% Faradaic efficiency toward H2 for 120 h at a current density of 100 mA cm−2. With the high-integrity merit, our electrolyzer can be facilely scaled up into practical cell stacks with significantly increased active area and promising prospects for volume/space-sensitive application scenarios. This electrolyzer concept opens an underexplored design space for energy-saving H2 production from low-grade saline water sources, being complementary to, and potentially competitive with the pre-purification schemes.","PeriodicalId":125,"journal":{"name":"Angewandte Chemie International Edition","volume":"96 1","pages":""},"PeriodicalIF":16.1000,"publicationDate":"2025-01-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Angewandte Chemie International Edition","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/anie.202422840","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Membrane-assisted direct seawater splitting (DSS) technologies are actively studied as a promising route to produce green hydrogen (H2), whereas the indispensable use of supporting electrolytes that help to extract water and provide electrochemically-accelerated reaction media results in a severe energy penalty, consuming up to 12.5% of energy input when using a typical KOH electrolyte. We bypass this issue by designing a zero-gap electrolyzer configuration based on the integration of cation exchange membrane and bipolar membrane assemblies, which protects stable DSS operation against the precipitates and corrosion in the absence of additional supporting electrolytes. The heterolytic water dissociation function of the bipolar membrane in-situ creates an asymmetric acidic-alkaline environment, kinetically facilitating H2 and O2 evolution reactions. When working in natural seawater without any chemical inputs, this zero-gap electrolyzer sustains nearly 100% Faradaic efficiency toward H2 for 120 h at a current density of 100 mA cm−2. With the high-integrity merit, our electrolyzer can be facilely scaled up into practical cell stacks with significantly increased active area and promising prospects for volume/space-sensitive application scenarios. This electrolyzer concept opens an underexplored design space for energy-saving H2 production from low-grade saline water sources, being complementary to, and potentially competitive with the pre-purification schemes.
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
26.60
自引率
6.60%
发文量
3549
审稿时长
1.5 months
期刊介绍: Angewandte Chemie, a journal of the German Chemical Society (GDCh), maintains a leading position among scholarly journals in general chemistry with an impressive Impact Factor of 16.6 (2022 Journal Citation Reports, Clarivate, 2023). Published weekly in a reader-friendly format, it features new articles almost every day. Established in 1887, Angewandte Chemie is a prominent chemistry journal, offering a dynamic blend of Review-type articles, Highlights, Communications, and Research Articles on a weekly basis, making it unique in the field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信