Yue Zhang , Tingting Li , Xueman Ding , Li Liu , Runjiang Ma , Wenqi Qin , Chulin Yan , Chun Wang , Jingjing Zhang , Mulatibieke Keerman , Qiang Niu
{"title":"F-53B disrupts energy metabolism by inhibiting the V-ATPase-AMPK axis in neuronal cells","authors":"Yue Zhang , Tingting Li , Xueman Ding , Li Liu , Runjiang Ma , Wenqi Qin , Chulin Yan , Chun Wang , Jingjing Zhang , Mulatibieke Keerman , Qiang Niu","doi":"10.1016/j.jhazmat.2025.137111","DOIUrl":null,"url":null,"abstract":"<div><div>6:2 chloro-polyfluorooctane ether sulfonate (F-53B) is considered neurotoxic, but its mechanisms remain unclear. This study aimed to investigate the toxic effects of F-53B on neuronal cells, focusing on the role of the V-ATPase-AMPK axis in the mechanism of abnormal energy metabolism. Mouse astrocytes (C8-D1A) and human neuroblastoma cells (SH-SY5Y) exposed to F-53B were used as <em>in vitro</em> models. Our findings demonstrated that F-53B inhibited the expression of V-ATPase B2 and reduced V-ATPase activity, leading to an increase in lysosomal pH, decreased expression of TRPML1, and lysosomal Ca<sup>2 +</sup> accumulation. In turn, led to reduced the expression of CaMKK2 and phosphorylated AMPK (p-AMPK). Ultimately, mitochondria were damaged, evidenced by increased mitochondrial reactive oxygen species, mitochondrial membrane potential, and impaired mitochondrial oxidative phosphorylation, as shown by reduced NDUFS1 expression and diminished respiratory chain complex I activity. F-53B reduced the expression of the key glycolytic protein PFKFB3. Notably, V-ATPase B2 overexpression indirectly activates AMPK. Furthermore, resveratrol, an AMPK agonist, alleviates mitochondrial dysfunction and increases ATP production by promoting the recovery of mitochondria and glycolytic pathways. These findings elucidate a novel mechanism by which F-53B induces neurotoxicity through the V-ATPase-AMPK axis, and indicate V-ATPase and AMPK as potential therapeutic targets.</div></div>","PeriodicalId":361,"journal":{"name":"Journal of Hazardous Materials","volume":"487 ","pages":"Article 137111"},"PeriodicalIF":11.3000,"publicationDate":"2025-01-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Hazardous Materials","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0304389425000238","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0
Abstract
6:2 chloro-polyfluorooctane ether sulfonate (F-53B) is considered neurotoxic, but its mechanisms remain unclear. This study aimed to investigate the toxic effects of F-53B on neuronal cells, focusing on the role of the V-ATPase-AMPK axis in the mechanism of abnormal energy metabolism. Mouse astrocytes (C8-D1A) and human neuroblastoma cells (SH-SY5Y) exposed to F-53B were used as in vitro models. Our findings demonstrated that F-53B inhibited the expression of V-ATPase B2 and reduced V-ATPase activity, leading to an increase in lysosomal pH, decreased expression of TRPML1, and lysosomal Ca2 + accumulation. In turn, led to reduced the expression of CaMKK2 and phosphorylated AMPK (p-AMPK). Ultimately, mitochondria were damaged, evidenced by increased mitochondrial reactive oxygen species, mitochondrial membrane potential, and impaired mitochondrial oxidative phosphorylation, as shown by reduced NDUFS1 expression and diminished respiratory chain complex I activity. F-53B reduced the expression of the key glycolytic protein PFKFB3. Notably, V-ATPase B2 overexpression indirectly activates AMPK. Furthermore, resveratrol, an AMPK agonist, alleviates mitochondrial dysfunction and increases ATP production by promoting the recovery of mitochondria and glycolytic pathways. These findings elucidate a novel mechanism by which F-53B induces neurotoxicity through the V-ATPase-AMPK axis, and indicate V-ATPase and AMPK as potential therapeutic targets.
期刊介绍:
The Journal of Hazardous Materials serves as a global platform for promoting cutting-edge research in the field of Environmental Science and Engineering. Our publication features a wide range of articles, including full-length research papers, review articles, and perspectives, with the aim of enhancing our understanding of the dangers and risks associated with various materials concerning public health and the environment. It is important to note that the term "environmental contaminants" refers specifically to substances that pose hazardous effects through contamination, while excluding those that do not have such impacts on the environment or human health. Moreover, we emphasize the distinction between wastes and hazardous materials in order to provide further clarity on the scope of the journal. We have a keen interest in exploring specific compounds and microbial agents that have adverse effects on the environment.
文献相关原料
公司名称
产品信息
索莱宝
Resveratrol (RSV)
索莱宝
LysoTracker Red
索莱宝
mitochondrial membrane potential assay kit (JC-1)
索莱宝
mitochondrial respiratory chain complex I activity assay kit