Effects of Gamma and Proton Irradiation on 100 Gbps Silicon Modulators

IF 6.5 1区 物理与天体物理 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Nengyang Zhao, Peichuan Yin, Chao Qiu, Yanyue Ding, Dawei Bi, Longlong Zhang, Enxia Zhang, Ruxue Wang, Aimin Wu
{"title":"Effects of Gamma and Proton Irradiation on 100 Gbps Silicon Modulators","authors":"Nengyang Zhao, Peichuan Yin, Chao Qiu, Yanyue Ding, Dawei Bi, Longlong Zhang, Enxia Zhang, Ruxue Wang, Aimin Wu","doi":"10.1021/acsphotonics.4c01653","DOIUrl":null,"url":null,"abstract":"We investigated the impact of γ-rays and proton irradiation on the performance of high-speed modulators by exposing four-channel 4 × 100 Gbps silicon transmitter chips to both of these radiation sources. The results of our studies indicate that the modulators demonstrated exceptional radiation resistance for various combinations of energy-dose exposure to γ-rays and proton irradiation in terms of the electro-optic modulation rate, extinction ratio, and modulation efficiency. When subjected to a cumulative radiation dose of 25 Mrad(Si) γ-rays irradiation, the modulation bandwidth decreases from 52 to 31 GHz. Nevertheless, it was mostly restored using a 7 h annealing procedure at a temperature of 100 °C. Proton irradiation at different energy levels and fluences did not have significant detrimental effects on the performance of the modulators. Moreover, it did enhance the modulation efficiency at low fluence.","PeriodicalId":23,"journal":{"name":"ACS Photonics","volume":"20 1","pages":""},"PeriodicalIF":6.5000,"publicationDate":"2025-01-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Photonics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1021/acsphotonics.4c01653","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

We investigated the impact of γ-rays and proton irradiation on the performance of high-speed modulators by exposing four-channel 4 × 100 Gbps silicon transmitter chips to both of these radiation sources. The results of our studies indicate that the modulators demonstrated exceptional radiation resistance for various combinations of energy-dose exposure to γ-rays and proton irradiation in terms of the electro-optic modulation rate, extinction ratio, and modulation efficiency. When subjected to a cumulative radiation dose of 25 Mrad(Si) γ-rays irradiation, the modulation bandwidth decreases from 52 to 31 GHz. Nevertheless, it was mostly restored using a 7 h annealing procedure at a temperature of 100 °C. Proton irradiation at different energy levels and fluences did not have significant detrimental effects on the performance of the modulators. Moreover, it did enhance the modulation efficiency at low fluence.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Photonics
ACS Photonics NANOSCIENCE & NANOTECHNOLOGY-MATERIALS SCIENCE, MULTIDISCIPLINARY
CiteScore
11.90
自引率
5.70%
发文量
438
审稿时长
2.3 months
期刊介绍: Published as soon as accepted and summarized in monthly issues, ACS Photonics will publish Research Articles, Letters, Perspectives, and Reviews, to encompass the full scope of published research in this field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信