An examination of the dose rate effect in mice assuming that the carcinogenic effect of radiation is life shortening resulting from a tissue reaction.

Nori Nakamura
{"title":"An examination of the dose rate effect in mice assuming that the carcinogenic effect of radiation is life shortening resulting from a tissue reaction.","authors":"Nori Nakamura","doi":"10.1080/09553002.2024.2442690","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>Radiation exposures do not seem to increase the proportion of mice dying from tumors, but rather cause a shift in the appearance of spontaneous cancers, allowing them to appear earlier, and hence produce a life shortening effect. Then, it was possible to estimate the effect of the dose rate on the carcinogenic effects of radiation using life shortening effects as a measure.</p><p><strong>Conclusion: </strong>The dose response for the induction of life shortening was linear under acute exposure conditions, which indicates that the response under chronic exposure conditions is also likely to be linear, and hence the dose rate factor (DRF) would be constant throughout the dose. Furthermore, the life shortening effect decreased sharply with an increase in age at exposure. To separate the dose rate effect from the effects of age under long-term exposure conditions, a thought experiment was designed which consisted of 8 repeated exposures to an acute 1 Gy dose at intervals of 50 days with an assumption that the effect is additive, and the results were compared with those observed in a chronic continuous exposure experiment (20 mGy per day for 400 days, for a total of 8 Gy: Tanaka et al. 2003). The results showed 211 days of life shortening in the former and 120 days in the latter, which provided a DRF of 1.8 (211/120). If one assumes that a tissue reaction is the primary cause of radiation carcinogenesis, the contrasting two concepts, radiation hormesis and linear-non-threshold model at low doses, would become compatible.</p>","PeriodicalId":94057,"journal":{"name":"International journal of radiation biology","volume":" ","pages":"1-7"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International journal of radiation biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/09553002.2024.2442690","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Purpose: Radiation exposures do not seem to increase the proportion of mice dying from tumors, but rather cause a shift in the appearance of spontaneous cancers, allowing them to appear earlier, and hence produce a life shortening effect. Then, it was possible to estimate the effect of the dose rate on the carcinogenic effects of radiation using life shortening effects as a measure.

Conclusion: The dose response for the induction of life shortening was linear under acute exposure conditions, which indicates that the response under chronic exposure conditions is also likely to be linear, and hence the dose rate factor (DRF) would be constant throughout the dose. Furthermore, the life shortening effect decreased sharply with an increase in age at exposure. To separate the dose rate effect from the effects of age under long-term exposure conditions, a thought experiment was designed which consisted of 8 repeated exposures to an acute 1 Gy dose at intervals of 50 days with an assumption that the effect is additive, and the results were compared with those observed in a chronic continuous exposure experiment (20 mGy per day for 400 days, for a total of 8 Gy: Tanaka et al. 2003). The results showed 211 days of life shortening in the former and 120 days in the latter, which provided a DRF of 1.8 (211/120). If one assumes that a tissue reaction is the primary cause of radiation carcinogenesis, the contrasting two concepts, radiation hormesis and linear-non-threshold model at low doses, would become compatible.

求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信