Game-theoretic planning for multiplayer defense task with online objective function parameter estimation.

Hongwei Fang, Peng Yi
{"title":"Game-theoretic planning for multiplayer defense task with online objective function parameter estimation.","authors":"Hongwei Fang, Peng Yi","doi":"10.1016/j.isatra.2024.11.053","DOIUrl":null,"url":null,"abstract":"<p><p>This work investigates a game-theoretic path planning algorithm with online objective function parameter estimation for a multiplayer intrusion-defense game, where the defenders aim to prevent intruders from entering the protected area. At first, an intruder is assigned to each defender to perform a one-to-one interception by solving an integer optimization problem. Then, the intrusion-defense game is formulated in a receding horizon manner by designing the objective function and constraints for the defenders and intruders, respectively. Their objective functions are coupled because they both consider the predicted interactions between the intruders and defenders. Therefore, a distributed proximal iterative best response scheme is designed for the group of defenders to cooperatively compute the Nash equilibrium. Each defender iteratively solves its own and its interception target's optimization problems, and shares information within the defender group. Since the defenders cannot know the parameters of the intruders' objective functions, an unscented Kalman filter-based estimator is constructed to online estimate the opponent's unknown parameters. Extensive simulation experiments verify the effectiveness of the proposed method.</p>","PeriodicalId":94059,"journal":{"name":"ISA transactions","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-12-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ISA transactions","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.isatra.2024.11.053","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This work investigates a game-theoretic path planning algorithm with online objective function parameter estimation for a multiplayer intrusion-defense game, where the defenders aim to prevent intruders from entering the protected area. At first, an intruder is assigned to each defender to perform a one-to-one interception by solving an integer optimization problem. Then, the intrusion-defense game is formulated in a receding horizon manner by designing the objective function and constraints for the defenders and intruders, respectively. Their objective functions are coupled because they both consider the predicted interactions between the intruders and defenders. Therefore, a distributed proximal iterative best response scheme is designed for the group of defenders to cooperatively compute the Nash equilibrium. Each defender iteratively solves its own and its interception target's optimization problems, and shares information within the defender group. Since the defenders cannot know the parameters of the intruders' objective functions, an unscented Kalman filter-based estimator is constructed to online estimate the opponent's unknown parameters. Extensive simulation experiments verify the effectiveness of the proposed method.

求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信