γ-radiation induced reduction in antinutrients of buckwheat (Fagopryum esculentum Moench) seeds and leaves.

Kuldip Chandra Verma, Kumkum Giri, Sanjay Kumar Verma, Pawanesh Tamta, Nidhi Joshi
{"title":"γ-radiation induced reduction in antinutrients of buckwheat (<i>Fagopryum esculentum</i> Moench) seeds and leaves.","authors":"Kuldip Chandra Verma, Kumkum Giri, Sanjay Kumar Verma, Pawanesh Tamta, Nidhi Joshi","doi":"10.1080/09553002.2024.2445580","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>Buckwheat, a dicotyledonous crop of Polygonaceae family, is known for its nutritional value and adaptability to adverse climates. Local people reported that prolonged consumption of buckwheat seeds and leaves causes numbness and gastrointestinal problems. The present study was conducted to observe the impact of different doses of γ-radiations on phytoconstituents of buckwheat seeds and leaves, to make them nutritionally superior.</p><p><strong>Materials and methods: </strong>Buckwheat seeds were treated with 5, 10, 15 and 20 kGy doses of γ-radiations and grown in an experimental farm. Various phytoconstituents in seeds and leaves were analyzed.</p><p><strong>Results: </strong>The antioxidant, phenol, flavonoid, β-carotene, iron, calcium, lysine and arginine were increased significantly (<5%) with increasing doses of γ-radiations up to 10 kGy, whereas, anti-nutrients (tannin, phytic acid and oxalate) decreased significantly (<5%). γ-radiation @ 10 kGy is the best for the enhancement of phytoconstituents in buckwheat seeds from a nutrition point of view. Phytoconstituents in buckwheat leaves and irradiated seed progeny were positively co-related with M1 seeds.</p><p><strong>Conclusions: </strong>It can be concluded that the buckwheat seeds treated with a 10 kGy dose of γ-radiation are the best to produce green leaves as hara saag, and progeny seeds for preparation of flour. However, superior mutant selection and effect of by-products from γ-irradiated buckwheat seeds is the thrust area of future research.</p>","PeriodicalId":94057,"journal":{"name":"International journal of radiation biology","volume":" ","pages":"1-13"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International journal of radiation biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/09553002.2024.2445580","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Purpose: Buckwheat, a dicotyledonous crop of Polygonaceae family, is known for its nutritional value and adaptability to adverse climates. Local people reported that prolonged consumption of buckwheat seeds and leaves causes numbness and gastrointestinal problems. The present study was conducted to observe the impact of different doses of γ-radiations on phytoconstituents of buckwheat seeds and leaves, to make them nutritionally superior.

Materials and methods: Buckwheat seeds were treated with 5, 10, 15 and 20 kGy doses of γ-radiations and grown in an experimental farm. Various phytoconstituents in seeds and leaves were analyzed.

Results: The antioxidant, phenol, flavonoid, β-carotene, iron, calcium, lysine and arginine were increased significantly (<5%) with increasing doses of γ-radiations up to 10 kGy, whereas, anti-nutrients (tannin, phytic acid and oxalate) decreased significantly (<5%). γ-radiation @ 10 kGy is the best for the enhancement of phytoconstituents in buckwheat seeds from a nutrition point of view. Phytoconstituents in buckwheat leaves and irradiated seed progeny were positively co-related with M1 seeds.

Conclusions: It can be concluded that the buckwheat seeds treated with a 10 kGy dose of γ-radiation are the best to produce green leaves as hara saag, and progeny seeds for preparation of flour. However, superior mutant selection and effect of by-products from γ-irradiated buckwheat seeds is the thrust area of future research.

求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信