Influence of stromal neural crest progenitor cells on neuroblastoma radioresistance.

Carlos Huertas-Castaño, Laura Martínez-López, Patricia Cabrera-Roldán, Nuria Pastor, Juan Carlos Mateos, Santiago Mateos, Ricardo Pardal, Inmaculada Domínguez, Manuel Luis Orta
{"title":"Influence of stromal neural crest progenitor cells on neuroblastoma radioresistance.","authors":"Carlos Huertas-Castaño, Laura Martínez-López, Patricia Cabrera-Roldán, Nuria Pastor, Juan Carlos Mateos, Santiago Mateos, Ricardo Pardal, Inmaculada Domínguez, Manuel Luis Orta","doi":"10.1080/09553002.2024.2440865","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>A substantial proportion of children with high risk Neuroblastoma die within the first 5 years post-diagnosis despite the complex treatment applied. In the recent years, tumor environment has been revealed as key factor for cancer treatment efficacy. In this sense, non-tumorigenic Neural Crest progenitor cells from high risk patients, have been described as part of Neuroblastoma stroma, promoting tumor growth and contributing to mesenchyme formation. In this paper we wanted to study the radiobiological behavior of these cells (NB14t) and how they influence the growth of tumorigenic neuroblasts after radiotherapy.</p><p><strong>Materials and methods: </strong>To achieve our aim, we employed a wide list of methods either using NB14t cells as well as commercial NB cells. We have analyzed viability, survival, cell cyle profiles and differentiation. In addition, cocultured experiments were performed to monitor the influence of stroma cells to tumorigenic neuroblasts.</p><p><strong>Results: </strong>We found that stromal progenitor cells showed an extraordinary radio-resistance either cultured in attached or suspension conditions. In good agreement, we found an enhanced repair of irradiation-induced DNA lesions as compared with commercial cell lines. In addition, according to our data these cells differentiate into a Cancer Associated Fibroblasts (CAFs)-like phenotype, hence contributing to the formation of mesenchymal stroma enhancing the growth of tumor cells after irradiation.</p><p><strong>Conclusion: </strong>Our data show that neural progenitor cells from high risk NB stroma are radio-resistant and promote cancer growth after irradiation. This paper can help to understand the complex cell relationships within a tumor that will determine patient prognosis after radiotherapy.</p>","PeriodicalId":94057,"journal":{"name":"International journal of radiation biology","volume":" ","pages":"1-11"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International journal of radiation biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/09553002.2024.2440865","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Purpose: A substantial proportion of children with high risk Neuroblastoma die within the first 5 years post-diagnosis despite the complex treatment applied. In the recent years, tumor environment has been revealed as key factor for cancer treatment efficacy. In this sense, non-tumorigenic Neural Crest progenitor cells from high risk patients, have been described as part of Neuroblastoma stroma, promoting tumor growth and contributing to mesenchyme formation. In this paper we wanted to study the radiobiological behavior of these cells (NB14t) and how they influence the growth of tumorigenic neuroblasts after radiotherapy.

Materials and methods: To achieve our aim, we employed a wide list of methods either using NB14t cells as well as commercial NB cells. We have analyzed viability, survival, cell cyle profiles and differentiation. In addition, cocultured experiments were performed to monitor the influence of stroma cells to tumorigenic neuroblasts.

Results: We found that stromal progenitor cells showed an extraordinary radio-resistance either cultured in attached or suspension conditions. In good agreement, we found an enhanced repair of irradiation-induced DNA lesions as compared with commercial cell lines. In addition, according to our data these cells differentiate into a Cancer Associated Fibroblasts (CAFs)-like phenotype, hence contributing to the formation of mesenchymal stroma enhancing the growth of tumor cells after irradiation.

Conclusion: Our data show that neural progenitor cells from high risk NB stroma are radio-resistant and promote cancer growth after irradiation. This paper can help to understand the complex cell relationships within a tumor that will determine patient prognosis after radiotherapy.

求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信