Yilei Zhao , Xiaonan Zhao , Xuechun Wang , Zilin Ma , Jie Yan , Songyan Li , Ning Wang , Jianwei Jiao , Jiwei Cui , Guiqiang Zhang
{"title":"Polyphenol-mediated assembly of toll-like receptor 7/8 agonist nanoparticles for effective tumor immunotherapy","authors":"Yilei Zhao , Xiaonan Zhao , Xuechun Wang , Zilin Ma , Jie Yan , Songyan Li , Ning Wang , Jianwei Jiao , Jiwei Cui , Guiqiang Zhang","doi":"10.1016/j.actbio.2024.12.060","DOIUrl":null,"url":null,"abstract":"<div><div>Toll-like receptor (TLR) 7/8 agonists have shown significant potential in tumor immunotherapy. However, the limited pharmacokinetic properties and systemic toxicity resulting from off-target effects limits their biomedical applications. We here report the polyphenol-mediated assembly of resiquimod (R848, a TLR7/8 agonist) nanoparticles (RTP NPs) to achieve tumor-selective immunotherapy while avoiding systemic adverse effects. Upon intravenous administration, the prepared RTP NPs are effectively accumulated at tumor sites, which increase their bioavailability and reduce systemic inflammation. RTP NPs can trigger a potent antitumor immune response in a mouse tumor model to inhibit tumor growth. Additionally, after subcutaneous injection at the tail base, RTP NPs efficiently migrate to the lymph nodes, where they elicit immune memory to prevent tumorigenesis. This study underscores the potential application of polyphenol-mediated assembly in developing nanomedicines with reduced toxicity for tumor-specific immunotherapy.</div></div><div><h3>Statement of significance</h3><div>Toll-like receptor agonist (R848) nanoparticles for tumor-selective immunotherapy were synthesized through polyphenol-mediated assembly, a method that simplifies preparation process and minimizes potential side effects. Intravenously administered these nanoparticles effectively extended circulation time, enhanced tumor enrichment, and reduced systemic inflammation, thus augmenting the bioavailability and minimizing the side effects of R848. The nanoparticles significantly inhibited tumor growth by triggering a potent antitumor immune response, including dendritic cell maturation, macrophage polarization, T-cell infiltration, and cytokine secretion. Moreover, after subcutaneous injection at the tail base, they can elicit immune memory to prevent tumorigenesis.</div></div>","PeriodicalId":237,"journal":{"name":"Acta Biomaterialia","volume":"193 ","pages":"Pages 417-428"},"PeriodicalIF":9.4000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Biomaterialia","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1742706124007803","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Toll-like receptor (TLR) 7/8 agonists have shown significant potential in tumor immunotherapy. However, the limited pharmacokinetic properties and systemic toxicity resulting from off-target effects limits their biomedical applications. We here report the polyphenol-mediated assembly of resiquimod (R848, a TLR7/8 agonist) nanoparticles (RTP NPs) to achieve tumor-selective immunotherapy while avoiding systemic adverse effects. Upon intravenous administration, the prepared RTP NPs are effectively accumulated at tumor sites, which increase their bioavailability and reduce systemic inflammation. RTP NPs can trigger a potent antitumor immune response in a mouse tumor model to inhibit tumor growth. Additionally, after subcutaneous injection at the tail base, RTP NPs efficiently migrate to the lymph nodes, where they elicit immune memory to prevent tumorigenesis. This study underscores the potential application of polyphenol-mediated assembly in developing nanomedicines with reduced toxicity for tumor-specific immunotherapy.
Statement of significance
Toll-like receptor agonist (R848) nanoparticles for tumor-selective immunotherapy were synthesized through polyphenol-mediated assembly, a method that simplifies preparation process and minimizes potential side effects. Intravenously administered these nanoparticles effectively extended circulation time, enhanced tumor enrichment, and reduced systemic inflammation, thus augmenting the bioavailability and minimizing the side effects of R848. The nanoparticles significantly inhibited tumor growth by triggering a potent antitumor immune response, including dendritic cell maturation, macrophage polarization, T-cell infiltration, and cytokine secretion. Moreover, after subcutaneous injection at the tail base, they can elicit immune memory to prevent tumorigenesis.
期刊介绍:
Acta Biomaterialia is a monthly peer-reviewed scientific journal published by Elsevier. The journal was established in January 2005. The editor-in-chief is W.R. Wagner (University of Pittsburgh). The journal covers research in biomaterials science, including the interrelationship of biomaterial structure and function from macroscale to nanoscale. Topical coverage includes biomedical and biocompatible materials.