Shelby Dahlen, Ipsita Mohanty, Bo Sun, Sanjana Nallapaneni, Patrick Osei-Owusu
{"title":"Germline deletion of Rgs2 and/or Rgs5 in male mice does not exacerbate left ventricular remodeling induced by subchronic isoproterenol infusion.","authors":"Shelby Dahlen, Ipsita Mohanty, Bo Sun, Sanjana Nallapaneni, Patrick Osei-Owusu","doi":"10.14814/phy2.70178","DOIUrl":null,"url":null,"abstract":"<p><p>Sympathoexcitation is a hallmark of heart failure, with sustained β-adrenergic receptor (βAR)-G protein signaling activation. βAR signaling is modulated by regulator of G protein signaling (RGS) proteins. Previously, we reported that Gα<sub>i/o</sub> regulation by RGS2 or RGS5 is key to ventricular rhythm regulation, while the dual loss of both RGS proteins results in left ventricular (LV) dilatation and dysfunction. Here, we tested whether sustained βAR stimulation with isoproterenol (ISO, 30 mg/kg/day, 3 days) exacerbates LV remodeling in male mice with germline deletion of Rgs2 and/or Rgs5. Rgs2 KO and Rgs2/5 dbKO mice showed LV dilatation at baseline, which was unchanged by ISO. Rgs2 or Rgs5 deletion decreased Rgs1 expression, whereas Rgs5 deletion increased Rgs4 expression. ISO induced cardiac hypertrophy and interstitial fibrosis in Rgs2/5 dbKO mice without increasing cardiomyocyte size or LV dilation but increased expression of cardiac fetal gene Nppa, α-actinin, and Ca<sup>2+</sup>-/calmodulin-dependent kinase II. Single Rgs2 and Rgs5 KO mice had markedly increased CD45<sup>+</sup> cells, whereas tissue from Rgs5 KO mice showed increased CD68<sup>+</sup> cells, as revealed by immunohistochemistry. The results together indicate that ventricular remodeling due to Rgs2 and/or Rgs5 deletion is associated with augmented myocardial immune cell presence but is not exacerbated by sustained βAR stimulation.</p>","PeriodicalId":20083,"journal":{"name":"Physiological Reports","volume":"13 1","pages":"e70178"},"PeriodicalIF":2.2000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11695115/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physiological Reports","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14814/phy2.70178","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Sympathoexcitation is a hallmark of heart failure, with sustained β-adrenergic receptor (βAR)-G protein signaling activation. βAR signaling is modulated by regulator of G protein signaling (RGS) proteins. Previously, we reported that Gαi/o regulation by RGS2 or RGS5 is key to ventricular rhythm regulation, while the dual loss of both RGS proteins results in left ventricular (LV) dilatation and dysfunction. Here, we tested whether sustained βAR stimulation with isoproterenol (ISO, 30 mg/kg/day, 3 days) exacerbates LV remodeling in male mice with germline deletion of Rgs2 and/or Rgs5. Rgs2 KO and Rgs2/5 dbKO mice showed LV dilatation at baseline, which was unchanged by ISO. Rgs2 or Rgs5 deletion decreased Rgs1 expression, whereas Rgs5 deletion increased Rgs4 expression. ISO induced cardiac hypertrophy and interstitial fibrosis in Rgs2/5 dbKO mice without increasing cardiomyocyte size or LV dilation but increased expression of cardiac fetal gene Nppa, α-actinin, and Ca2+-/calmodulin-dependent kinase II. Single Rgs2 and Rgs5 KO mice had markedly increased CD45+ cells, whereas tissue from Rgs5 KO mice showed increased CD68+ cells, as revealed by immunohistochemistry. The results together indicate that ventricular remodeling due to Rgs2 and/or Rgs5 deletion is associated with augmented myocardial immune cell presence but is not exacerbated by sustained βAR stimulation.
期刊介绍:
Physiological Reports is an online only, open access journal that will publish peer reviewed research across all areas of basic, translational, and clinical physiology and allied disciplines. Physiological Reports is a collaboration between The Physiological Society and the American Physiological Society, and is therefore in a unique position to serve the international physiology community through quick time to publication while upholding a quality standard of sound research that constitutes a useful contribution to the field.