Soft Metalens for Broadband Ultrasonic Focusing through Aberration Layers.

IF 14.7 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Erqian Dong, Tianye Zhang, Jinhu Zhang, Xiaochun Su, Sichao Qu, Xin Ye, Zhanyuan Gao, Chengtian Gao, Jiangang Hui, Zhanxiang Wang, Nicholas X Fang, Yu Zhang
{"title":"Soft Metalens for Broadband Ultrasonic Focusing through Aberration Layers.","authors":"Erqian Dong, Tianye Zhang, Jinhu Zhang, Xiaochun Su, Sichao Qu, Xin Ye, Zhanyuan Gao, Chengtian Gao, Jiangang Hui, Zhanxiang Wang, Nicholas X Fang, Yu Zhang","doi":"10.1038/s41467-024-55022-2","DOIUrl":null,"url":null,"abstract":"<p><p>Aberration layers (AL) often present significant energy transmission barriers in microwave engineering, electromagnetic waves, and medical ultrasound. However, achieving broadband ultrasonic focusing through aberration layers like the human skull using conventional materials such as metals and elastomers has proven challenging. In this study, we introduce an inverse phase encoding method employing tunable soft metalens to penetrate heterogeneous aberration layers. Through the application of effective-medium theory, we determined the refractive index of micro-tungsten particles in silicone elastomer, closely aligning with experimental findings. The soft metalens allows for transmission across broadband frequencies (50 kHz to 0.4 MHz) through 3D-printed human skull models mimicking aberration layers. In ex vivo transcranial ultrasound tests, we observed a 9.3 dB intensity enhancement at the focal point compared to results obtained using an unfocused transducer. By integrating soft materials, metamaterials, and gradient refractive index, the soft metalens presents future opportunities for advancing next-generation soft devices in deep-brain stimulation, non-destructive evaluation, and high-resolution ultrasound imaging.</p>","PeriodicalId":19066,"journal":{"name":"Nature Communications","volume":"16 1","pages":"308"},"PeriodicalIF":14.7000,"publicationDate":"2025-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11697215/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Communications","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41467-024-55022-2","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Aberration layers (AL) often present significant energy transmission barriers in microwave engineering, electromagnetic waves, and medical ultrasound. However, achieving broadband ultrasonic focusing through aberration layers like the human skull using conventional materials such as metals and elastomers has proven challenging. In this study, we introduce an inverse phase encoding method employing tunable soft metalens to penetrate heterogeneous aberration layers. Through the application of effective-medium theory, we determined the refractive index of micro-tungsten particles in silicone elastomer, closely aligning with experimental findings. The soft metalens allows for transmission across broadband frequencies (50 kHz to 0.4 MHz) through 3D-printed human skull models mimicking aberration layers. In ex vivo transcranial ultrasound tests, we observed a 9.3 dB intensity enhancement at the focal point compared to results obtained using an unfocused transducer. By integrating soft materials, metamaterials, and gradient refractive index, the soft metalens presents future opportunities for advancing next-generation soft devices in deep-brain stimulation, non-destructive evaluation, and high-resolution ultrasound imaging.

通过像差层进行宽带超声聚焦的软超透镜。
在微波工程、电磁波和医学超声中,像差层(AL)经常存在显著的能量传输障碍。然而,利用传统材料(如金属和弹性体)通过像人类头骨这样的像差层实现宽带超声聚焦已被证明是具有挑战性的。在本研究中,我们引入了一种利用可调谐软超透镜穿透非均匀像差层的逆相位编码方法。应用有效介质理论,测定了硅弹性体中微钨粒子的折射率,与实验结果吻合较好。软超透镜允许通过模拟像差层的3d打印人类头骨模型在宽带频率(50 kHz至0.4 MHz)上传输。在体外经颅超声测试中,与使用无聚焦换能器获得的结果相比,我们在焦点处观察到9.3 dB的强度增强。通过整合软材料、超材料和梯度折射率,软超透镜为推进下一代脑深部刺激、非破坏性评估和高分辨率超声成像的软设备提供了未来的机会。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Nature Communications
Nature Communications Biological Science Disciplines-
CiteScore
24.90
自引率
2.40%
发文量
6928
审稿时长
3.7 months
期刊介绍: Nature Communications, an open-access journal, publishes high-quality research spanning all areas of the natural sciences. Papers featured in the journal showcase significant advances relevant to specialists in each respective field. With a 2-year impact factor of 16.6 (2022) and a median time of 8 days from submission to the first editorial decision, Nature Communications is committed to rapid dissemination of research findings. As a multidisciplinary journal, it welcomes contributions from biological, health, physical, chemical, Earth, social, mathematical, applied, and engineering sciences, aiming to highlight important breakthroughs within each domain.
文献相关原料
公司名称
产品信息
阿拉丁
tungsten powder
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信