Coevolution of Atypical BRAF and KRAS Mutations in Colorectal Tumorigenesis.

IF 4.1 2区 医学 Q2 CELL BIOLOGY
Connor E Woolley, Enric Domingo, Juan Fernandez-Tajes, Kathryn A F Pennel, Patricia Roxburgh, Joanne Edwards, Susan D Richman, Tim S Maughan, David J Kerr, Ignacio Soriano, Ian P M Tomlinson
{"title":"Coevolution of Atypical BRAF and KRAS Mutations in Colorectal Tumorigenesis.","authors":"Connor E Woolley, Enric Domingo, Juan Fernandez-Tajes, Kathryn A F Pennel, Patricia Roxburgh, Joanne Edwards, Susan D Richman, Tim S Maughan, David J Kerr, Ignacio Soriano, Ian P M Tomlinson","doi":"10.1158/1541-7786.MCR-24-0464","DOIUrl":null,"url":null,"abstract":"<p><p>BRAF mutations in colorectal cancer comprise three functional classes: class 1 (V600E) with strong constitutive activation, class 2 with pathogenic kinase activity lower than that of class 1, and class 3 which paradoxically lacks kinase activity. Non-class 1 mutations associate with better prognosis, microsatellite stability, distal tumor location, and better anti-EGFR response. An analysis of 13 colorectal cancer cohorts (n = 6,605 tumors) compared class 1 (n = 709, 10.7% of colorectal cancers), class 2 (n = 31, 0.47%), and class 3 (n = 81, 1.22%) mutations. Class 2-mutant and class 3-mutant colorectal cancers frequently co-occurred with additional Ras pathway mutations (29.0% and 45.7%, respectively, vs. 2.40% in class 1; P < 0.001), often at atypical sites (KRAS noncodon 12/13/61, NRAS, or NF1). Ras pathway activation was highest in class 1 and lowest in class 3, with a greater distal expression of EGFR ligands (amphiregulin/epiregulin) supporting weaker BRAF driver mutations. Unlike class 1 mutants, class 3 tumors resembled chromosomally unstable colorectal cancers in mutation burdens, signatures, driver mutations, and transcriptional subtypes, whereas class 2 mutants displayed intermediate characteristics. Atypical BRAF mutations were associated with longer overall survival than class 1 mutations (HR = 0.25; P = 0.011) but lost this advantage in cancers with additional Ras mutations (HR = 0.94; P = 0.86). This study supports the suggestion that class 3 BRAF mutations amplify existing Ras signaling in a two-mutation model and that the enhancement of weak/atypical Ras mutations may suffice for tumorigenesis, with potentially clinically important heterogeneity in the class 2/3 subgroup. Implications: The heterogeneous nature of BRAF-mutant colorectal cancers, particularly among class 2/3 mutations which frequently harbor additional Ras mutations, highlights the necessity of comprehensive molecular profiling.</p>","PeriodicalId":19095,"journal":{"name":"Molecular Cancer Research","volume":" ","pages":"300-312"},"PeriodicalIF":4.1000,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7617415/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Cancer Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1158/1541-7786.MCR-24-0464","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

BRAF mutations in colorectal cancer comprise three functional classes: class 1 (V600E) with strong constitutive activation, class 2 with pathogenic kinase activity lower than that of class 1, and class 3 which paradoxically lacks kinase activity. Non-class 1 mutations associate with better prognosis, microsatellite stability, distal tumor location, and better anti-EGFR response. An analysis of 13 colorectal cancer cohorts (n = 6,605 tumors) compared class 1 (n = 709, 10.7% of colorectal cancers), class 2 (n = 31, 0.47%), and class 3 (n = 81, 1.22%) mutations. Class 2-mutant and class 3-mutant colorectal cancers frequently co-occurred with additional Ras pathway mutations (29.0% and 45.7%, respectively, vs. 2.40% in class 1; P < 0.001), often at atypical sites (KRAS noncodon 12/13/61, NRAS, or NF1). Ras pathway activation was highest in class 1 and lowest in class 3, with a greater distal expression of EGFR ligands (amphiregulin/epiregulin) supporting weaker BRAF driver mutations. Unlike class 1 mutants, class 3 tumors resembled chromosomally unstable colorectal cancers in mutation burdens, signatures, driver mutations, and transcriptional subtypes, whereas class 2 mutants displayed intermediate characteristics. Atypical BRAF mutations were associated with longer overall survival than class 1 mutations (HR = 0.25; P = 0.011) but lost this advantage in cancers with additional Ras mutations (HR = 0.94; P = 0.86). This study supports the suggestion that class 3 BRAF mutations amplify existing Ras signaling in a two-mutation model and that the enhancement of weak/atypical Ras mutations may suffice for tumorigenesis, with potentially clinically important heterogeneity in the class 2/3 subgroup. Implications: The heterogeneous nature of BRAF-mutant colorectal cancers, particularly among class 2/3 mutations which frequently harbor additional Ras mutations, highlights the necessity of comprehensive molecular profiling.

非典型BRAF和KRAS突变在结直肠肿瘤发生中的共同进化。
结直肠癌(CRC)中的BRAF突变包括三个功能类别:具有强组成激活的1类(V600E),致病激酶活性低于1类的2类,以及矛盾地缺乏激酶活性的3类。非1类突变与更好的预后、微卫星稳定性、远端肿瘤位置和更好的抗egfr反应相关。对13个CRC队列(n= 6605个肿瘤)进行分析,比较1类(n=709,占CRC的10.7%)、2类(n=31, 0.47%)和3类(n=81, 1.22%)突变。2类和3类突变型crc经常与其他Ras通路突变同时发生(分别为29.0%和45.7%,而1类为2.40%,p
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Molecular Cancer Research
Molecular Cancer Research 医学-细胞生物学
CiteScore
9.90
自引率
0.00%
发文量
280
审稿时长
4-8 weeks
期刊介绍: Molecular Cancer Research publishes articles describing novel basic cancer research discoveries of broad interest to the field. Studies must be of demonstrated significance, and the journal prioritizes analyses performed at the molecular and cellular level that reveal novel mechanistic insight into pathways and processes linked to cancer risk, development, and/or progression. Areas of emphasis include all cancer-associated pathways (including cell-cycle regulation; cell death; chromatin regulation; DNA damage and repair; gene and RNA regulation; genomics; oncogenes and tumor suppressors; signal transduction; and tumor microenvironment), in addition to studies describing new molecular mechanisms and interactions that support cancer phenotypes. For full consideration, primary research submissions must provide significant novel insight into existing pathway functions or address new hypotheses associated with cancer-relevant biologic questions.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信