Atomic-scale understanding of oxide growth and dissolution kinetics of Ni-Cr alloys.

IF 14.7 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Penghao Xiao, Christine A Orme, S Roger Qiu, Tuan Anh Pham, Seongkoo Cho, Michael Bagge-Hansen, Brandon C Wood
{"title":"Atomic-scale understanding of oxide growth and dissolution kinetics of Ni-Cr alloys.","authors":"Penghao Xiao, Christine A Orme, S Roger Qiu, Tuan Anh Pham, Seongkoo Cho, Michael Bagge-Hansen, Brandon C Wood","doi":"10.1038/s41467-024-54627-x","DOIUrl":null,"url":null,"abstract":"<p><p>Aqueous corrosion of metals is governed by formation and dissolution of a passivating, multi-component surface oxide. Unfortunately, a detailed atomistic description is challenging due to the compositional complexity and the need to consider multiple kinetic factors simultaneously. To this end, we combine experiments with a first-principles-derived, multiscale computational framework that transcends thermodynamic descriptions to explicitly simulate the kinetic evolution of surface oxides of Ni-Cr alloys as a function of composition, temperature, pH, and applied voltage. In the absence of pitting, we identify three distinct voltage regimes, which are kinetically dominated by oxide growth, dissolution, and competitive dissolution and reprecipitation. Evolving compositional gradients and oxide thickness are revealed, including a transition between a metastable Ni-Cr mixed oxide and a thick, porous Ni-dominated oxide. Beyond elucidating the underlying physics, we highlight the need for competing kinetics in models to properly predict the transition from passivation to corrosion. Our results provide a key step towards co-design of alloy composition alongside environmental conditions for sustainable use across a variety of critical energy and infrastructure applications.</p>","PeriodicalId":19066,"journal":{"name":"Nature Communications","volume":"16 1","pages":"341"},"PeriodicalIF":14.7000,"publicationDate":"2025-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11696368/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Communications","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41467-024-54627-x","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Aqueous corrosion of metals is governed by formation and dissolution of a passivating, multi-component surface oxide. Unfortunately, a detailed atomistic description is challenging due to the compositional complexity and the need to consider multiple kinetic factors simultaneously. To this end, we combine experiments with a first-principles-derived, multiscale computational framework that transcends thermodynamic descriptions to explicitly simulate the kinetic evolution of surface oxides of Ni-Cr alloys as a function of composition, temperature, pH, and applied voltage. In the absence of pitting, we identify three distinct voltage regimes, which are kinetically dominated by oxide growth, dissolution, and competitive dissolution and reprecipitation. Evolving compositional gradients and oxide thickness are revealed, including a transition between a metastable Ni-Cr mixed oxide and a thick, porous Ni-dominated oxide. Beyond elucidating the underlying physics, we highlight the need for competing kinetics in models to properly predict the transition from passivation to corrosion. Our results provide a key step towards co-design of alloy composition alongside environmental conditions for sustainable use across a variety of critical energy and infrastructure applications.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Nature Communications
Nature Communications Biological Science Disciplines-
CiteScore
24.90
自引率
2.40%
发文量
6928
审稿时长
3.7 months
期刊介绍: Nature Communications, an open-access journal, publishes high-quality research spanning all areas of the natural sciences. Papers featured in the journal showcase significant advances relevant to specialists in each respective field. With a 2-year impact factor of 16.6 (2022) and a median time of 8 days from submission to the first editorial decision, Nature Communications is committed to rapid dissemination of research findings. As a multidisciplinary journal, it welcomes contributions from biological, health, physical, chemical, Earth, social, mathematical, applied, and engineering sciences, aiming to highlight important breakthroughs within each domain.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信