Pei Su, John P McGee, Michael A R Hollas, Ryan T Fellers, Kenneth R Durbin, Joseph B Greer, Bryan P Early, Ping F Yip, Vlad Zabrouskov, Kristina Srzentić, Michael W Senko, Philip D Compton, Neil L Kelleher, Jared O Kafader
{"title":"Standardized workflow for multiplexed charge detection mass spectrometry on orbitrap analyzers.","authors":"Pei Su, John P McGee, Michael A R Hollas, Ryan T Fellers, Kenneth R Durbin, Joseph B Greer, Bryan P Early, Ping F Yip, Vlad Zabrouskov, Kristina Srzentić, Michael W Senko, Philip D Compton, Neil L Kelleher, Jared O Kafader","doi":"10.1038/s41596-024-01091-y","DOIUrl":null,"url":null,"abstract":"<p><p>Individual ion mass spectrometry (I<sup>2</sup>MS) is the Orbitrap-based extension of the niche mass spectrometry technique known as charge detection mass spectrometry (CDMS). While traditional CDMS analysis is performed on in-house-built instruments such as the electrostatic linear ion trap, I<sup>2</sup>MS extends CDMS analysis to Orbitrap analyzers, allowing charge detection analysis to be available to the scientific community at large. I<sup>2</sup>MS simultaneously measures the mass-to-charge ratios (m/z) and charges (z) of hundreds to thousands of individual ions within one acquisition event, creating a spectral output directly into the mass domain without the need for further spectral deconvolution. A mass distribution or 'profile' can be created for any desired sample regardless of composition or heterogeneity. To assist in reducing I<sup>2</sup>MS analysis to practice, we developed this workflow for data acquisition and subsequent data analysis, which includes (i) protein sample preparation, (ii) attenuation of ion signals to obtain individual ions, (iii) the creation of a charge-calibration curve from standard proteins with known charge states and finally (iv) producing a meaningful mass spectral output from a complex or unknown sample by using the STORIboard software. This protocol is suitable for users with prior experience in mass spectrometry and bioanalytical chemistry. First, the analysis of protein standards in native and denaturing mode is presented, setting the foundation for the analysis of complex mixtures that are intractable via traditional mass spectrometry techniques. Examples of complex mixtures included here demonstrate the relevant analysis of an intact human monoclonal antibody and its intricate glycosylation patterns.</p>","PeriodicalId":18901,"journal":{"name":"Nature Protocols","volume":" ","pages":""},"PeriodicalIF":13.1000,"publicationDate":"2025-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Protocols","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1038/s41596-024-01091-y","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
Individual ion mass spectrometry (I2MS) is the Orbitrap-based extension of the niche mass spectrometry technique known as charge detection mass spectrometry (CDMS). While traditional CDMS analysis is performed on in-house-built instruments such as the electrostatic linear ion trap, I2MS extends CDMS analysis to Orbitrap analyzers, allowing charge detection analysis to be available to the scientific community at large. I2MS simultaneously measures the mass-to-charge ratios (m/z) and charges (z) of hundreds to thousands of individual ions within one acquisition event, creating a spectral output directly into the mass domain without the need for further spectral deconvolution. A mass distribution or 'profile' can be created for any desired sample regardless of composition or heterogeneity. To assist in reducing I2MS analysis to practice, we developed this workflow for data acquisition and subsequent data analysis, which includes (i) protein sample preparation, (ii) attenuation of ion signals to obtain individual ions, (iii) the creation of a charge-calibration curve from standard proteins with known charge states and finally (iv) producing a meaningful mass spectral output from a complex or unknown sample by using the STORIboard software. This protocol is suitable for users with prior experience in mass spectrometry and bioanalytical chemistry. First, the analysis of protein standards in native and denaturing mode is presented, setting the foundation for the analysis of complex mixtures that are intractable via traditional mass spectrometry techniques. Examples of complex mixtures included here demonstrate the relevant analysis of an intact human monoclonal antibody and its intricate glycosylation patterns.
期刊介绍:
Nature Protocols focuses on publishing protocols used to address significant biological and biomedical science research questions, including methods grounded in physics and chemistry with practical applications to biological problems. The journal caters to a primary audience of research scientists and, as such, exclusively publishes protocols with research applications. Protocols primarily aimed at influencing patient management and treatment decisions are not featured.
The specific techniques covered encompass a wide range, including but not limited to: Biochemistry, Cell biology, Cell culture, Chemical modification, Computational biology, Developmental biology, Epigenomics, Genetic analysis, Genetic modification, Genomics, Imaging, Immunology, Isolation, purification, and separation, Lipidomics, Metabolomics, Microbiology, Model organisms, Nanotechnology, Neuroscience, Nucleic-acid-based molecular biology, Pharmacology, Plant biology, Protein analysis, Proteomics, Spectroscopy, Structural biology, Synthetic chemistry, Tissue culture, Toxicology, and Virology.