A strategy to reduce thermal expansion and achieve higher mechanical properties in iron alloys.

IF 14.7 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Hao Lu, Chang Zhou, Yuzhu Song, Yuanpeng Zhang, Yiming Wu, Feixiang Long, Yonghao Yao, Jiazheng Hao, Yan Chen, Dunji Yu, J Jakob Schwiedrzik, Ke An, Lunhua He, Zhaoping Lu, Jun Chen
{"title":"A strategy to reduce thermal expansion and achieve higher mechanical properties in iron alloys.","authors":"Hao Lu, Chang Zhou, Yuzhu Song, Yuanpeng Zhang, Yiming Wu, Feixiang Long, Yonghao Yao, Jiazheng Hao, Yan Chen, Dunji Yu, J Jakob Schwiedrzik, Ke An, Lunhua He, Zhaoping Lu, Jun Chen","doi":"10.1038/s41467-024-55551-w","DOIUrl":null,"url":null,"abstract":"<p><p>Iron alloys, including steels and magnetic functional materials, are widely used in capital construction, manufacturing, electromagnetic technology, etc. However, they face the long-standing challenge of high coefficient of thermal expansion (CTE), limiting the applications in high-precision fields. This work proposes a strategy involving the in-situ formation of a nano-scale lamellar/labyrinthine negative thermal expansion (NTE) phase within the iron matrix to tackle this problem. For example, a model alloy, Fe-Zr10-Nb6, was synthesized and its CTE is reduced to approximately half of the iron matrix. Meanwhile, the alloy possesses a strength-plasticity combination of 1.5 GPa (compressive strength) and 17.5% (ultimate strain), which outperforms other low thermal expansion (LTE) metallic materials. The magnetovolume effect of the NTE phase is deemed to counteract the positive thermal expansion in iron. The high stress-carrying hard NTE phase and the tough matrix synergistically contribute to the high mechanical properties. The interaction between the slip of lamellar microstructure and the slip-hindering of labyrinthine microstructure further enhances the strength-plasticity combination. This work shows the promise of offering a method to produce LTE iron alloys with high mechanical properties.</p>","PeriodicalId":19066,"journal":{"name":"Nature Communications","volume":"16 1","pages":"211"},"PeriodicalIF":14.7000,"publicationDate":"2025-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11696188/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Communications","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41467-024-55551-w","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Iron alloys, including steels and magnetic functional materials, are widely used in capital construction, manufacturing, electromagnetic technology, etc. However, they face the long-standing challenge of high coefficient of thermal expansion (CTE), limiting the applications in high-precision fields. This work proposes a strategy involving the in-situ formation of a nano-scale lamellar/labyrinthine negative thermal expansion (NTE) phase within the iron matrix to tackle this problem. For example, a model alloy, Fe-Zr10-Nb6, was synthesized and its CTE is reduced to approximately half of the iron matrix. Meanwhile, the alloy possesses a strength-plasticity combination of 1.5 GPa (compressive strength) and 17.5% (ultimate strain), which outperforms other low thermal expansion (LTE) metallic materials. The magnetovolume effect of the NTE phase is deemed to counteract the positive thermal expansion in iron. The high stress-carrying hard NTE phase and the tough matrix synergistically contribute to the high mechanical properties. The interaction between the slip of lamellar microstructure and the slip-hindering of labyrinthine microstructure further enhances the strength-plasticity combination. This work shows the promise of offering a method to produce LTE iron alloys with high mechanical properties.

一种减少铁合金热膨胀并获得更高机械性能的策略。
铁合金,包括钢材和磁性功能材料,广泛应用于基本建设、制造业、电磁技术等领域。然而,它们长期面临着高热膨胀系数(CTE)的挑战,限制了它们在高精度领域的应用。这项工作提出了一种策略,涉及在铁基体内原位形成纳米级片层/迷路负热膨胀(NTE)相来解决这个问题。例如,合成了Fe-Zr10-Nb6模型合金,其CTE降至铁基体的一半左右。同时,该合金具有1.5 GPa(抗压强度)和17.5%(极限应变)的强度塑性组合,优于其他低热膨胀(LTE)金属材料。NTE相的磁体积效应被认为抵消了铁中的正热膨胀。高载应力的硬NTE相和坚韧的基体共同作用,使材料具有较高的力学性能。层状组织的滑移与迷路状组织的滑移阻碍之间的相互作用进一步增强了强度-塑性结合。这项工作显示了提供一种生产具有高机械性能的LTE铁合金的方法的希望。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Nature Communications
Nature Communications Biological Science Disciplines-
CiteScore
24.90
自引率
2.40%
发文量
6928
审稿时长
3.7 months
期刊介绍: Nature Communications, an open-access journal, publishes high-quality research spanning all areas of the natural sciences. Papers featured in the journal showcase significant advances relevant to specialists in each respective field. With a 2-year impact factor of 16.6 (2022) and a median time of 8 days from submission to the first editorial decision, Nature Communications is committed to rapid dissemination of research findings. As a multidisciplinary journal, it welcomes contributions from biological, health, physical, chemical, Earth, social, mathematical, applied, and engineering sciences, aiming to highlight important breakthroughs within each domain.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信