Unveiling exogenous potential of phytohormones as sustainable arsenals against plant pathogens: molecular signaling and crosstalk insights.

IF 2.6 4区 生物学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY
Lucky Duhan, Ritu Pasrija
{"title":"Unveiling exogenous potential of phytohormones as sustainable arsenals against plant pathogens: molecular signaling and crosstalk insights.","authors":"Lucky Duhan, Ritu Pasrija","doi":"10.1007/s11033-024-10206-3","DOIUrl":null,"url":null,"abstract":"<p><p>Plants frequently confront pathogens that disrupt physiological and molecular functions, ultimately reducing agricultural yields. To counter these challenges, plants activate sophisticated defense mechanisms to recognize stress signals while optimizing growth. Phytohormones signaling pathways and their crosstalk are central to regulating plant growth, development and defense. Numerous proteins associated with phytohormone signaling pathways have been identified, including receptors for several vital hormones. Previous studies indicate that defense phytohormones, like salicylic acid (SA), jasmonic acid (JA) and ethylene (ET), are crucial to pathogen defense. SA specifically mediates systemic acquired resistance against biotrophic pathogens, while induced systemic resistance relies on JA and ET signaling in response to necrotrophic pathogens. Other hormones, typically associated with growth and development, such as ethylene, abscisic acid, brassinosteroids, melatonin, gibberellins, auxin, and cytokinin, also interact in a complex network of synergistic and antagonistic relationships with defense phytohormones. Moreover, they can achieve effects that surpass conventional pathogen control methods, suggesting their potential as exogenous biocontrol agents. During the past decade, our knowledge of hormone signaling and stress response has become immense. Thus, this review is an attempt to summarize some of the advances in plant signaling and crosstalk mechanisms as well as their potential to be a future arsenal in biotic stress mitigation strategies. Ultimately, this work emphasizes using exogenous phytohormones as a viable alternative for controlling pathogens to enhance crop productivity in pathogen-affected regions.</p>","PeriodicalId":18755,"journal":{"name":"Molecular Biology Reports","volume":"52 1","pages":"98"},"PeriodicalIF":2.6000,"publicationDate":"2025-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Biology Reports","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s11033-024-10206-3","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Plants frequently confront pathogens that disrupt physiological and molecular functions, ultimately reducing agricultural yields. To counter these challenges, plants activate sophisticated defense mechanisms to recognize stress signals while optimizing growth. Phytohormones signaling pathways and their crosstalk are central to regulating plant growth, development and defense. Numerous proteins associated with phytohormone signaling pathways have been identified, including receptors for several vital hormones. Previous studies indicate that defense phytohormones, like salicylic acid (SA), jasmonic acid (JA) and ethylene (ET), are crucial to pathogen defense. SA specifically mediates systemic acquired resistance against biotrophic pathogens, while induced systemic resistance relies on JA and ET signaling in response to necrotrophic pathogens. Other hormones, typically associated with growth and development, such as ethylene, abscisic acid, brassinosteroids, melatonin, gibberellins, auxin, and cytokinin, also interact in a complex network of synergistic and antagonistic relationships with defense phytohormones. Moreover, they can achieve effects that surpass conventional pathogen control methods, suggesting their potential as exogenous biocontrol agents. During the past decade, our knowledge of hormone signaling and stress response has become immense. Thus, this review is an attempt to summarize some of the advances in plant signaling and crosstalk mechanisms as well as their potential to be a future arsenal in biotic stress mitigation strategies. Ultimately, this work emphasizes using exogenous phytohormones as a viable alternative for controlling pathogens to enhance crop productivity in pathogen-affected regions.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Molecular Biology Reports
Molecular Biology Reports 生物-生化与分子生物学
CiteScore
5.00
自引率
0.00%
发文量
1048
审稿时长
5.6 months
期刊介绍: Molecular Biology Reports publishes original research papers and review articles that demonstrate novel molecular and cellular findings in both eukaryotes (animals, plants, algae, funghi) and prokaryotes (bacteria and archaea).The journal publishes results of both fundamental and translational research as well as new techniques that advance experimental progress in the field and presents original research papers, short communications and (mini-) reviews.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信