Time Course of Orientation Ensemble Representation in the Human Brain.

IF 4.4 2区 医学 Q1 NEUROSCIENCES
Xizi Gong, Tao He, Qian Wang, Junshi Lu, Fang Fang
{"title":"Time Course of Orientation Ensemble Representation in the Human Brain.","authors":"Xizi Gong, Tao He, Qian Wang, Junshi Lu, Fang Fang","doi":"10.1523/JNEUROSCI.1688-23.2024","DOIUrl":null,"url":null,"abstract":"<p><p>Natural scenes are filled with groups of similar items. Humans employ ensemble coding to extract the summary statistical information of the environment, thereby enhancing the efficiency of information processing, something particularly useful when observing natural scenes. However, the neural mechanisms underlying the representation of ensemble information in the brain remain elusive. In particular, whether ensemble representation results from the mere summation of individual item representations or it engages other specific processes remains unclear. In this study, we utilized a set of orientation ensembles wherein none of the individual item orientations were the same as the ensemble orientation. We recorded magnetoencephalography (MEG) signals from human participants (both sexes) when they performed an ensemble orientation discrimination task. Time-resolved multivariate pattern analysis (MVPA) and the inverted encoding model (IEM) were employed to unravel the neural mechanisms of the ensemble orientation representation and track its time course. First, we achieved successful decoding of the ensemble orientation, with a high correlation between the decoding and behavioral accuracies. Second, the IEM analysis demonstrated that the representation of the ensemble orientation differed from the sum of the representations of individual item orientations, suggesting that ensemble coding could further modulate orientation representation in the brain. Moreover, using source reconstruction, we showed that the representation of ensemble orientation manifested in early visual areas. Taken together, our findings reveal the emergence of the ensemble representation in the human visual cortex and advance the understanding of how the brain captures and represents ensemble information.<b>Significance Statement</b> Ensemble coding, a cognitive process of extracting summary statistical information from groups of similar items, stands as a pivotal strategy enabling humans to efficiently process complex natural scenes with limited sensory capacities. However, the neural mechanisms of ensemble coding remain largely unknown. Recent modeling studies have predominantly highlighted the importance of the summed activation across all items in ensemble coding. Intriguingly, here, we show that ensemble orientation representation differed from the summed representation of all component item orientations, suggesting that ensemble coding incorporates additional processes beyond mere summation. Additionally, we explore how the ensemble orientation representation per se evolved in the human visual cortex. Our findings significantly extend our understanding of ensemble coding.</p>","PeriodicalId":50114,"journal":{"name":"Journal of Neuroscience","volume":" ","pages":""},"PeriodicalIF":4.4000,"publicationDate":"2025-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Neuroscience","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1523/JNEUROSCI.1688-23.2024","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Natural scenes are filled with groups of similar items. Humans employ ensemble coding to extract the summary statistical information of the environment, thereby enhancing the efficiency of information processing, something particularly useful when observing natural scenes. However, the neural mechanisms underlying the representation of ensemble information in the brain remain elusive. In particular, whether ensemble representation results from the mere summation of individual item representations or it engages other specific processes remains unclear. In this study, we utilized a set of orientation ensembles wherein none of the individual item orientations were the same as the ensemble orientation. We recorded magnetoencephalography (MEG) signals from human participants (both sexes) when they performed an ensemble orientation discrimination task. Time-resolved multivariate pattern analysis (MVPA) and the inverted encoding model (IEM) were employed to unravel the neural mechanisms of the ensemble orientation representation and track its time course. First, we achieved successful decoding of the ensemble orientation, with a high correlation between the decoding and behavioral accuracies. Second, the IEM analysis demonstrated that the representation of the ensemble orientation differed from the sum of the representations of individual item orientations, suggesting that ensemble coding could further modulate orientation representation in the brain. Moreover, using source reconstruction, we showed that the representation of ensemble orientation manifested in early visual areas. Taken together, our findings reveal the emergence of the ensemble representation in the human visual cortex and advance the understanding of how the brain captures and represents ensemble information.Significance Statement Ensemble coding, a cognitive process of extracting summary statistical information from groups of similar items, stands as a pivotal strategy enabling humans to efficiently process complex natural scenes with limited sensory capacities. However, the neural mechanisms of ensemble coding remain largely unknown. Recent modeling studies have predominantly highlighted the importance of the summed activation across all items in ensemble coding. Intriguingly, here, we show that ensemble orientation representation differed from the summed representation of all component item orientations, suggesting that ensemble coding incorporates additional processes beyond mere summation. Additionally, we explore how the ensemble orientation representation per se evolved in the human visual cortex. Our findings significantly extend our understanding of ensemble coding.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Neuroscience
Journal of Neuroscience 医学-神经科学
CiteScore
9.30
自引率
3.80%
发文量
1164
审稿时长
12 months
期刊介绍: JNeurosci (ISSN 0270-6474) is an official journal of the Society for Neuroscience. It is published weekly by the Society, fifty weeks a year, one volume a year. JNeurosci publishes papers on a broad range of topics of general interest to those working on the nervous system. Authors now have an Open Choice option for their published articles
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信