J A Black, B C Poulton, B Gonzaga, A Iskantar, D Paape, L R O Tosi, R McCulloch
{"title":"AUK3 is required for faithful nuclear segregation in the bloodstream form of Trypanosoma brucei.","authors":"J A Black, B C Poulton, B Gonzaga, A Iskantar, D Paape, L R O Tosi, R McCulloch","doi":"10.1016/j.molbiopara.2024.111664","DOIUrl":null,"url":null,"abstract":"<p><p>Eukaryotic chromosomes segregate faithfully prior to nuclear division to ensure genome stability. If segregation becomes defective, the chromosome copy number of the cell may alter leading to aneuploidy and/or polyploidy, both common hallmarks of cancers. In eukaryotes, aurora kinases regulate chromosome segregation during mitosis and meiosis, but their functions in the divergent, single-celled eukaryotic pathogen Trypanosoma brucei are less understood. Here, we focused on one of three aurora kinases in these parasites, TbAUK3, a homologue of the human aurora kinase AURKC, whose functions are primarily restricted to meiosis. We show that RNAi targeted depletion of TbAUK3 correlates with nuclear segregation defects, reduced proliferation, and decreased DNA synthesis, suggestive of a role for TbAUK3 during mitotic, not meiotic, chromosome segregation. Moreover, we uncover a putative role for TbAUK3 during the parasite's response to DNA damage since we show that depletion of TbAUK3 enhances DNA instability and sensitivity to genotoxic agents.</p>","PeriodicalId":18721,"journal":{"name":"Molecular and biochemical parasitology","volume":" ","pages":"111664"},"PeriodicalIF":1.4000,"publicationDate":"2024-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular and biochemical parasitology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.molbiopara.2024.111664","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Eukaryotic chromosomes segregate faithfully prior to nuclear division to ensure genome stability. If segregation becomes defective, the chromosome copy number of the cell may alter leading to aneuploidy and/or polyploidy, both common hallmarks of cancers. In eukaryotes, aurora kinases regulate chromosome segregation during mitosis and meiosis, but their functions in the divergent, single-celled eukaryotic pathogen Trypanosoma brucei are less understood. Here, we focused on one of three aurora kinases in these parasites, TbAUK3, a homologue of the human aurora kinase AURKC, whose functions are primarily restricted to meiosis. We show that RNAi targeted depletion of TbAUK3 correlates with nuclear segregation defects, reduced proliferation, and decreased DNA synthesis, suggestive of a role for TbAUK3 during mitotic, not meiotic, chromosome segregation. Moreover, we uncover a putative role for TbAUK3 during the parasite's response to DNA damage since we show that depletion of TbAUK3 enhances DNA instability and sensitivity to genotoxic agents.
期刊介绍:
The journal provides a medium for rapid publication of investigations of the molecular biology and biochemistry of parasitic protozoa and helminths and their interactions with both the definitive and intermediate host. The main subject areas covered are:
• the structure, biosynthesis, degradation, properties and function of DNA, RNA, proteins, lipids, carbohydrates and small molecular-weight substances
• intermediary metabolism and bioenergetics
• drug target characterization and the mode of action of antiparasitic drugs
• molecular and biochemical aspects of membrane structure and function
• host-parasite relationships that focus on the parasite, particularly as related to specific parasite molecules.
• analysis of genes and genome structure, function and expression
• analysis of variation in parasite populations relevant to genetic exchange, pathogenesis, drug and vaccine target characterization, and drug resistance.
• parasite protein trafficking, organelle biogenesis, and cellular structure especially with reference to the roles of specific molecules
• parasite programmed cell death, development, and cell division at the molecular level.