{"title":"Radiolabeled HER2-targeted molecular probes in breast cancer imaging: current knowledge and future prospective.","authors":"Fatemeh Movahed, Ouldouz Navaei, Shiva Taghlidi, Maryam Nurzadeh, Maryam Eslami Gharaati, Maryam Rabiei","doi":"10.1007/s00210-024-03691-7","DOIUrl":null,"url":null,"abstract":"<p><p>Breast cancer is the most frequent non-dermatologic malignancy in women. Breast cancer is characterized by the expression of the human epidermal growth factor receptor type 2 (HER2), and the presence or lack of estrogen receptor (ER) and progesterone receptor (PR) expression. HER2 overexpression is reported in about 20 to 25% of breast cancer patients, which is usually linked to cancer progression, metastases, and poor survival. Immunohistochemistry (IHC) and fluorescence in situ hybridization (FISH) are the gold standards for determining HER2 status, even though IHC has largely focused on quantifying HER2<sup>+</sup> status versus \"other\" HER2 status (including variants with low or no expression). Recent findings regarding the beneficial therapeutic effects of anti-HER2 monoclonal antibodies (mAb) in HER2<sup>low</sup> metastatic patients lead to changes in the classic definition of advanced breast cancer, and methods for precise assessment of HER2 status are being developed. As a result, various radiolabeled HER-targeted mAbs and antibody fragments have been designed to avoid repeated biopsies with potential bias due to tumor heterogeneity, including single-chain variable fragment (scFv), F(ab')2, affibody, and nanobody. These small targeting radiotracers displayed favorable biodistributions, clearance, and stability, allowing for higher image quality, shorter circulation half-life, and lower immunogenicity. This study aimed to comprehensively review the application of radiolabeled anti-HER2 antibody fragments in breast cancer in vivo imaging and provide a better understanding of targeted HER2 quantification.</p>","PeriodicalId":18876,"journal":{"name":"Naunyn-Schmiedeberg's archives of pharmacology","volume":" ","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2025-01-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Naunyn-Schmiedeberg's archives of pharmacology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s00210-024-03691-7","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0
Abstract
Breast cancer is the most frequent non-dermatologic malignancy in women. Breast cancer is characterized by the expression of the human epidermal growth factor receptor type 2 (HER2), and the presence or lack of estrogen receptor (ER) and progesterone receptor (PR) expression. HER2 overexpression is reported in about 20 to 25% of breast cancer patients, which is usually linked to cancer progression, metastases, and poor survival. Immunohistochemistry (IHC) and fluorescence in situ hybridization (FISH) are the gold standards for determining HER2 status, even though IHC has largely focused on quantifying HER2+ status versus "other" HER2 status (including variants with low or no expression). Recent findings regarding the beneficial therapeutic effects of anti-HER2 monoclonal antibodies (mAb) in HER2low metastatic patients lead to changes in the classic definition of advanced breast cancer, and methods for precise assessment of HER2 status are being developed. As a result, various radiolabeled HER-targeted mAbs and antibody fragments have been designed to avoid repeated biopsies with potential bias due to tumor heterogeneity, including single-chain variable fragment (scFv), F(ab')2, affibody, and nanobody. These small targeting radiotracers displayed favorable biodistributions, clearance, and stability, allowing for higher image quality, shorter circulation half-life, and lower immunogenicity. This study aimed to comprehensively review the application of radiolabeled anti-HER2 antibody fragments in breast cancer in vivo imaging and provide a better understanding of targeted HER2 quantification.
期刊介绍:
Naunyn-Schmiedeberg''s Archives of Pharmacology was founded in 1873 by B. Naunyn, O. Schmiedeberg and E. Klebs as Archiv für experimentelle Pathologie und Pharmakologie, is the offical journal of the German Society of Experimental and Clinical Pharmacology and Toxicology (Deutsche Gesellschaft für experimentelle und klinische Pharmakologie und Toxikologie, DGPT) and the Sphingolipid Club. The journal publishes invited reviews, original articles, short communications and meeting reports and appears monthly. Naunyn-Schmiedeberg''s Archives of Pharmacology welcomes manuscripts for consideration of publication that report new and significant information on drug action and toxicity of chemical compounds. Thus, its scope covers all fields of experimental and clinical pharmacology as well as toxicology and includes studies in the fields of neuropharmacology and cardiovascular pharmacology as well as those describing drug actions at the cellular, biochemical and molecular levels. Moreover, submission of clinical trials with healthy volunteers or patients is encouraged. Short communications provide a means for rapid publication of significant findings of current interest that represent a conceptual advance in the field.