Exhaled Breath Analysis Using a Novel Electronic Nose for Different Respiratory Disease Entities.

IF 4.6 2区 医学 Q1 RESPIRATORY SYSTEM
Lung Pub Date : 2025-01-03 DOI:10.1007/s00408-024-00776-1
Kai-Lun Yu, Han-Ching Yang, Chien-Feng Lee, Shang-Yu Wu, Zhong-Kai Ye, Sujeet Kumar Rai, Meng-Rui Lee, Kea-Tiong Tang, Jann-Yuan Wang
{"title":"Exhaled Breath Analysis Using a Novel Electronic Nose for Different Respiratory Disease Entities.","authors":"Kai-Lun Yu, Han-Ching Yang, Chien-Feng Lee, Shang-Yu Wu, Zhong-Kai Ye, Sujeet Kumar Rai, Meng-Rui Lee, Kea-Tiong Tang, Jann-Yuan Wang","doi":"10.1007/s00408-024-00776-1","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>Electronic noses (eNose) and gas chromatography mass spectrometry (GC-MS) are two important breath analysis approaches for differentiating between respiratory diseases. We evaluated the performance of a novel electronic nose for different respiratory diseases, and exhaled breath samples from patients were analyzed by GC-MS.</p><p><strong>Materials and methods: </strong>Patients with lung cancer, pneumonia, structural lung diseases, and healthy controls were recruited (May 2019-July 2022). Exhaled breath samples were collected for eNose and GC-MS analysis. Breathprint features from eNose were analyzed using support vector machine model and leave-one-out cross-validation was performed.</p><p><strong>Results: </strong>A total of 263 participants (including 95 lung cancer, 59 pneumonia, 71 structural lung disease, and 38 healthy participants) were included. Three-dimensional linear discriminant analysis (LDA) showed a clear distribution of breathprints. The overall accuracy of eNose for four groups was 0.738 (194/263). The accuracy was 0.86 (61/71), 0.81 (77/95), 0.53 (31/59), and 0.66 (25/38) for structural lung disease, lung cancer, pneumonia, and control groups respectively. Pair-wise diagnostic performance comparison revealed excellent discriminant power (AUC: 1-0.813) among four groups. The best performance was between structural lung disease and healthy controls (AUC: 1), followed by lung cancer and structural lung disease (AUC: 0.958). Volatile organic compounds revealed a high individual occurrence rate of cyclohexanone and N,N-dimethylacetamide in pneumonic patients, ethyl acetate in structural lung disease, and 2,3,4-trimethylhexane in lung cancer patients.</p><p><strong>Conclusions: </strong>Our study showed that the novel eNose effectively distinguishes respiratory diseases and holds potential as a point-of-care diagnostic tool, with GC-MS identifying candidate VOC biomarkers.</p>","PeriodicalId":18163,"journal":{"name":"Lung","volume":"203 1","pages":"14"},"PeriodicalIF":4.6000,"publicationDate":"2025-01-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Lung","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s00408-024-00776-1","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"RESPIRATORY SYSTEM","Score":null,"Total":0}
引用次数: 0

Abstract

Purpose: Electronic noses (eNose) and gas chromatography mass spectrometry (GC-MS) are two important breath analysis approaches for differentiating between respiratory diseases. We evaluated the performance of a novel electronic nose for different respiratory diseases, and exhaled breath samples from patients were analyzed by GC-MS.

Materials and methods: Patients with lung cancer, pneumonia, structural lung diseases, and healthy controls were recruited (May 2019-July 2022). Exhaled breath samples were collected for eNose and GC-MS analysis. Breathprint features from eNose were analyzed using support vector machine model and leave-one-out cross-validation was performed.

Results: A total of 263 participants (including 95 lung cancer, 59 pneumonia, 71 structural lung disease, and 38 healthy participants) were included. Three-dimensional linear discriminant analysis (LDA) showed a clear distribution of breathprints. The overall accuracy of eNose for four groups was 0.738 (194/263). The accuracy was 0.86 (61/71), 0.81 (77/95), 0.53 (31/59), and 0.66 (25/38) for structural lung disease, lung cancer, pneumonia, and control groups respectively. Pair-wise diagnostic performance comparison revealed excellent discriminant power (AUC: 1-0.813) among four groups. The best performance was between structural lung disease and healthy controls (AUC: 1), followed by lung cancer and structural lung disease (AUC: 0.958). Volatile organic compounds revealed a high individual occurrence rate of cyclohexanone and N,N-dimethylacetamide in pneumonic patients, ethyl acetate in structural lung disease, and 2,3,4-trimethylhexane in lung cancer patients.

Conclusions: Our study showed that the novel eNose effectively distinguishes respiratory diseases and holds potential as a point-of-care diagnostic tool, with GC-MS identifying candidate VOC biomarkers.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Lung
Lung 医学-呼吸系统
CiteScore
9.10
自引率
10.00%
发文量
95
审稿时长
6-12 weeks
期刊介绍: Lung publishes original articles, reviews and editorials on all aspects of the healthy and diseased lungs, of the airways, and of breathing. Epidemiological, clinical, pathophysiological, biochemical, and pharmacological studies fall within the scope of the journal. Case reports, short communications and technical notes can be accepted if they are of particular interest.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信