Commentary on: "Structural insights into a bacterial β-glucosidase capable of degrading sesaminol triglucoside to produce sesaminol: toward the understanding of the aglycone recognition mechanism by the C-terminal lid domain".

IF 2.1 4区 生物学 Q4 BIOCHEMISTRY & MOLECULAR BIOLOGY
Masamichi Nagae
{"title":"Commentary on: \"Structural insights into a bacterial β-glucosidase capable of degrading sesaminol triglucoside to produce sesaminol: toward the understanding of the aglycone recognition mechanism by the C-terminal lid domain\".","authors":"Masamichi Nagae","doi":"10.1093/jb/mvae094","DOIUrl":null,"url":null,"abstract":"<p><p>Sesaminol is an organic compound which shows the strong antioxidant, anti-inflammatory, and neuroprotective properties. Sesaminol triglucoside (STG) is glycosylated form of sesaminol and abundantly exists in sesame seeds. However, typical β-glucosidases could not deglycosylate STG probably due to its bulky aglycone. PSTG1 and 2 are β-glucosidases lately isolated from Paenibacillis sp. KB0459 and have the capacity to deglycosylate STG. A recent report by Yanai et al. (J. Biochem. 2023; 174:335-344) revealed that the unique domain architecture of PSTG1. Apart from other β-glucosdasies in GH3 family, PSTG1 has novel accessary domain (domain 4) at the C-terminus. Domain 4 contributes the dimer formation and is located close to the active site. Interestingly, several hydrophobic residues are exposed, suggesting that this domain may recognize the hydrophobic aglycone of STG. The physiological functions of the non-catalytic domains in glyco-enzymes are sometimes overlooked. This paper shed light on the aglycone recognition by novel accessary domain.</p>","PeriodicalId":15234,"journal":{"name":"Journal of biochemistry","volume":" ","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2025-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of biochemistry","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/jb/mvae094","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Sesaminol is an organic compound which shows the strong antioxidant, anti-inflammatory, and neuroprotective properties. Sesaminol triglucoside (STG) is glycosylated form of sesaminol and abundantly exists in sesame seeds. However, typical β-glucosidases could not deglycosylate STG probably due to its bulky aglycone. PSTG1 and 2 are β-glucosidases lately isolated from Paenibacillis sp. KB0459 and have the capacity to deglycosylate STG. A recent report by Yanai et al. (J. Biochem. 2023; 174:335-344) revealed that the unique domain architecture of PSTG1. Apart from other β-glucosdasies in GH3 family, PSTG1 has novel accessary domain (domain 4) at the C-terminus. Domain 4 contributes the dimer formation and is located close to the active site. Interestingly, several hydrophobic residues are exposed, suggesting that this domain may recognize the hydrophobic aglycone of STG. The physiological functions of the non-catalytic domains in glyco-enzymes are sometimes overlooked. This paper shed light on the aglycone recognition by novel accessary domain.

评论:“细菌β-葡萄糖苷酶的结构见解,能够降解芝麻胺醇三糖苷产生芝麻胺醇:通过c端盖子结构域理解苷元识别机制”。
芝麻醇是一种有机化合物,具有很强的抗氧化、抗炎和神经保护作用。Sesaminol triglucoside (STG)是Sesaminol的糖基化形式,在芝麻中大量存在。然而,典型的β-葡萄糖苷酶可能由于其庞大的苷元而不能使STG去糖基化。PSTG1和2是最近从Paenibacillis sp. KB0459中分离到的β-葡萄糖苷酶,具有去糖基化STG的能力。174:335-344)揭示了PSTG1独特的结构域结构。除了GH3家族中的其他β-糖苷外,PSTG1在c端具有新的辅助结构域(结构域4)。结构域4有助于二聚体的形成,并且位于活性位点附近。有趣的是,几个疏水残基被暴露出来,这表明该结构域可能识别STG的疏水苷元,而糖酶中非催化结构域的生理功能有时被忽视。本文介绍了一种新的辅助结构域在苷元识别中的应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of biochemistry
Journal of biochemistry 生物-生化与分子生物学
CiteScore
4.80
自引率
3.70%
发文量
101
审稿时长
4-8 weeks
期刊介绍: The Journal of Biochemistry founded in 1922 publishes the results of original research in the fields of Biochemistry, Molecular Biology, Cell, and Biotechnology written in English in the form of Regular Papers or Rapid Communications. A Rapid Communication is not a preliminary note, but it is, though brief, a complete and final publication. The materials described in Rapid Communications should not be included in a later paper. The Journal also publishes short reviews (JB Review) and papers solicited by the Editorial Board.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信