Genome-wide analysis of Flavobacterium strain YJ01 demonstrates abundant enzymes synergistically degrade diverse nature carbohydrates.

IF 3.2 3区 生物学 Q2 BIOTECHNOLOGY & APPLIED MICROBIOLOGY
Jiang-Ke Yang, Meng-Yao Ding, Yu-Ting Hu, Xi-Zhi Hong, Zheng-Gang Han, Lei Lei
{"title":"Genome-wide analysis of Flavobacterium strain YJ01 demonstrates abundant enzymes synergistically degrade diverse nature carbohydrates.","authors":"Jiang-Ke Yang, Meng-Yao Ding, Yu-Ting Hu, Xi-Zhi Hong, Zheng-Gang Han, Lei Lei","doi":"10.1093/jambio/lxae309","DOIUrl":null,"url":null,"abstract":"<p><strong>Aims: </strong>Flavobacterium strains are widely distributed in various environments and generally exhibit specialized roles in the degradation of complex organic substrates. To obtain a deeper understanding of their enzyme profiles, patterns of action on natural carbohydrates degradation, and to mine gene resources for biomass conversion.</p><p><strong>Methods and results: </strong>We sequenced the whole genome of a novel carbohydrate-degrading Flavobacterium sp. strain YJ01. The genome size of strain YJ01 was 5.48 Mb and encoded 4674 predicted genes. Comparative genomic analysis revealed Flavobacterium strains were characterized by the presence of abundant genes associated with catalytic activity and metabolic processes, especially carbohydrate metabolism. About 9% of genes of strain YJ01 encoded carbohydrate-active enzymes. These enzymes can act on various complex natural and cellular carbohydrates. The synergistic effect of the enzymes on the hydrolysis of complex natural polysaccharides was further experimentally evidenced by using starch and xylan as substrates, in which the degradation rate of an enzyme combination was ~10-fold higher than that of the single enzyme.</p><p><strong>Conclusions: </strong>Flavobacterium sp. strain YJ01 has a high degree of catalytic and metabolic activity toward carbohydrates, and it harbors abundant, complete, and efficient enzymes for mediating complex polysaccharide degradation. These enzymes, acting synergistically on complex substrates, greatly improved the efficiency of digestion, which may be associated with the extensive ecological adaptability of Flavobacterium, which genetically heterologous divergent from extremely environments origin Flavobacterium strains.</p>","PeriodicalId":15036,"journal":{"name":"Journal of Applied Microbiology","volume":" ","pages":""},"PeriodicalIF":3.2000,"publicationDate":"2025-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Applied Microbiology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/jambio/lxae309","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Aims: Flavobacterium strains are widely distributed in various environments and generally exhibit specialized roles in the degradation of complex organic substrates. To obtain a deeper understanding of their enzyme profiles, patterns of action on natural carbohydrates degradation, and to mine gene resources for biomass conversion.

Methods and results: We sequenced the whole genome of a novel carbohydrate-degrading Flavobacterium sp. strain YJ01. The genome size of strain YJ01 was 5.48 Mb and encoded 4674 predicted genes. Comparative genomic analysis revealed Flavobacterium strains were characterized by the presence of abundant genes associated with catalytic activity and metabolic processes, especially carbohydrate metabolism. About 9% of genes of strain YJ01 encoded carbohydrate-active enzymes. These enzymes can act on various complex natural and cellular carbohydrates. The synergistic effect of the enzymes on the hydrolysis of complex natural polysaccharides was further experimentally evidenced by using starch and xylan as substrates, in which the degradation rate of an enzyme combination was ~10-fold higher than that of the single enzyme.

Conclusions: Flavobacterium sp. strain YJ01 has a high degree of catalytic and metabolic activity toward carbohydrates, and it harbors abundant, complete, and efficient enzymes for mediating complex polysaccharide degradation. These enzymes, acting synergistically on complex substrates, greatly improved the efficiency of digestion, which may be associated with the extensive ecological adaptability of Flavobacterium, which genetically heterologous divergent from extremely environments origin Flavobacterium strains.

黄杆菌YJ01菌株的全基因组分析表明,丰富的酶可以协同降解多种天然碳水化合物。
目的:黄杆菌菌株广泛分布于各种环境中,通常在降解复杂的有机底物方面发挥特殊作用。为了更深入地了解它们的酶谱和对天然碳水化合物降解的作用模式,并挖掘生物质转化的基因资源:我们对新型碳水化合物降解黄杆菌(Flavobacterium sp.菌株 YJ01 的基因组大小为 5.48 Mb,编码 4 674 个预测基因。基因组比较分析表明,黄杆菌菌株的特点是存在大量与催化活性和代谢过程(尤其是碳水化合物代谢)相关的基因。YJ01菌株约9%的基因编码碳水化合物活性酶。这些酶可作用于各种复杂的天然碳水化合物和细胞碳水化合物。以淀粉和木聚糖为底物的实验进一步证明了这些酶对水解复杂天然多糖的协同作用,其中酶组合的降解率比单一酶高出约 10 倍:结论:黄杆菌菌株 YJ01 对碳水化合物具有高度的催化和代谢活性,它含有丰富、完整和高效的酶来介导复杂多糖的降解。这些酶在复杂底物上协同作用,极大地提高了消化效率,这可能与黄杆菌广泛的生态适应性有关,因为它在基因上与极端环境起源的黄杆菌菌株存在异源差异。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Applied Microbiology
Journal of Applied Microbiology 生物-生物工程与应用微生物
CiteScore
7.30
自引率
2.50%
发文量
427
审稿时长
2.7 months
期刊介绍: Journal of & Letters in Applied Microbiology are two of the flagship research journals of the Society for Applied Microbiology (SfAM). For more than 75 years they have been publishing top quality research and reviews in the broad field of applied microbiology. The journals are provided to all SfAM members as well as having a global online readership totalling more than 500,000 downloads per year in more than 200 countries. Submitting authors can expect fast decision and publication times, averaging 33 days to first decision and 34 days from acceptance to online publication. There are no page charges.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信