Yancai Li, Chunlong Liu, Qianqi Jin, Haizhen Yu, Huaijin Long
{"title":"H19/miR-484 axis serves as a candidate biomarker correlated with autism spectrum disorder","authors":"Yancai Li, Chunlong Liu, Qianqi Jin, Haizhen Yu, Huaijin Long","doi":"10.1002/jdn.10403","DOIUrl":null,"url":null,"abstract":"<div>\n \n \n <section>\n \n <h3> Background</h3>\n \n <p>Autism spectrum disorder (ASD) appears to be a common neurological developmental deficit disorder in pediatric patients, resulting in a tremendous burden on society.</p>\n </section>\n \n <section>\n \n <h3> Purpose</h3>\n \n <p>The article aimed to explore early diagnostic markers for ASD.</p>\n </section>\n \n <section>\n \n <h3> Methods</h3>\n \n <p>Levels of long non-coding RNA (lncRNA) H19 and microRNA-484 (miR-484) were detected using fluorescence quantitative polymerase chain reaction (PCR). The Spearman method was applied for the correlation analysis with ASD severity. To evaluate the role of H19 and miR-484 role in ASD diagnosis, the receiver operator characteristic (ROC) curve was plotted. Luciferase reporter assay was used to confirm the targeting relationship between H19 and miR-484. The functions and pathways related to miR-484 target genes were annotated by Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis.</p>\n </section>\n \n <section>\n \n <h3> Results</h3>\n \n <p>Elevated H19 levels were detected in ASD patients, which was positively correlated with disease severity. MiR-484 showed a decreasing trend in ASD patients, while it was negatively related to disease severity. Both H19 and miR-484 can distinguish ASD cases from controls with an AUC of 0.878 and 0.868, respectively. Luciferase reporter assay determined the target relationship between H19 and miR-484., and their combination showed the highest diagnostic value for ASD (AUC = 0.906). GO and KEGG analysis demonstrated the targeted genes of miR-484 were related to the development of ASD, and EIF4G2 and SMARCA2 were the main core genes.</p>\n </section>\n \n <section>\n \n <h3> Conclusion</h3>\n \n <p>H19 and miR-484 were dysregulated in ASD patients and were both associated with disease severity. The combined H19 and miR-484 represented a high diagnostic value for ASD.</p>\n </section>\n </div>","PeriodicalId":13914,"journal":{"name":"International Journal of Developmental Neuroscience","volume":"85 1","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2025-01-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Developmental Neuroscience","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jdn.10403","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"DEVELOPMENTAL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Background
Autism spectrum disorder (ASD) appears to be a common neurological developmental deficit disorder in pediatric patients, resulting in a tremendous burden on society.
Purpose
The article aimed to explore early diagnostic markers for ASD.
Methods
Levels of long non-coding RNA (lncRNA) H19 and microRNA-484 (miR-484) were detected using fluorescence quantitative polymerase chain reaction (PCR). The Spearman method was applied for the correlation analysis with ASD severity. To evaluate the role of H19 and miR-484 role in ASD diagnosis, the receiver operator characteristic (ROC) curve was plotted. Luciferase reporter assay was used to confirm the targeting relationship between H19 and miR-484. The functions and pathways related to miR-484 target genes were annotated by Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis.
Results
Elevated H19 levels were detected in ASD patients, which was positively correlated with disease severity. MiR-484 showed a decreasing trend in ASD patients, while it was negatively related to disease severity. Both H19 and miR-484 can distinguish ASD cases from controls with an AUC of 0.878 and 0.868, respectively. Luciferase reporter assay determined the target relationship between H19 and miR-484., and their combination showed the highest diagnostic value for ASD (AUC = 0.906). GO and KEGG analysis demonstrated the targeted genes of miR-484 were related to the development of ASD, and EIF4G2 and SMARCA2 were the main core genes.
Conclusion
H19 and miR-484 were dysregulated in ASD patients and were both associated with disease severity. The combined H19 and miR-484 represented a high diagnostic value for ASD.
期刊介绍:
International Journal of Developmental Neuroscience publishes original research articles and critical review papers on all fundamental and clinical aspects of nervous system development, renewal and regeneration, as well as on the effects of genetic and environmental perturbations of brain development and homeostasis leading to neurodevelopmental disorders and neurological conditions. Studies describing the involvement of stem cells in nervous system maintenance and disease (including brain tumours), stem cell-based approaches for the investigation of neurodegenerative diseases, roles of neuroinflammation in development and disease, and neuroevolution are also encouraged. Investigations using molecular, cellular, physiological, genetic and epigenetic approaches in model systems ranging from simple invertebrates to human iPSC-based 2D and 3D models are encouraged, as are studies using experimental models that provide behavioural or evolutionary insights. The journal also publishes Special Issues dealing with topics at the cutting edge of research edited by Guest Editors appointed by the Editor in Chief. A major aim of the journal is to facilitate the transfer of fundamental studies of nervous system development, maintenance, and disease to clinical applications. The journal thus intends to disseminate valuable information for both biologists and physicians. International Journal of Developmental Neuroscience is owned and supported by The International Society for Developmental Neuroscience (ISDN), an organization of scientists interested in advancing developmental neuroscience research in the broadest sense.