Yu Surkov, P Timoshina, I Serebryakova, D Stavtcev, I Kozlov, G Piavchenko, I Meglinski, A Konovalov, D Telyshev, S Kuznetcov, E Genina, V Tuchin
{"title":"Laser speckle contrast imaging with principal component and entropy analysis: a novel approach for depth-independent blood flow assessment.","authors":"Yu Surkov, P Timoshina, I Serebryakova, D Stavtcev, I Kozlov, G Piavchenko, I Meglinski, A Konovalov, D Telyshev, S Kuznetcov, E Genina, V Tuchin","doi":"10.1007/s12200-024-00143-1","DOIUrl":null,"url":null,"abstract":"<p><p>Current study presents an advanced method for improving the visualization of subsurface blood vessels using laser speckle contrast imaging (LSCI), enhanced through principal component analysis (PCA) filtering. By combining LSCI and laser speckle entropy imaging with PCA filtering, the method effectively separates static and dynamic components of the speckle signal, significantly improving the accuracy of blood flow assessments, even in the presence of static scattering layers located above and below the vessel. Experiments conducted on optical phantoms, with the vessel depths ranging from 0.6 to 2 mm, and in vivo studies on a laboratory mouse ear demonstrate substantial improvements in image contrast and resolution. The method's sensitivity to blood flow velocity within the physiologic range (0.98-19.66 mm/s) is significantly enhanced, while its sensitivity to vessel depth is minimized. These results highlight the method's ability to assess blood flow velocity independently of vessel depth, overcoming a major limitation of conventional LSCI techniques. The proposed approach holds great potential for non-invasive biomedical imaging, offering improved diagnostic accuracy and contrast in vascular imaging. These findings may be particularly valuable for advancing the use of LSCI in clinical diagnostics and biomedical research, where high precision in blood flow monitoring is essential.</p>","PeriodicalId":12685,"journal":{"name":"Frontiers of Optoelectronics","volume":"18 1","pages":"1"},"PeriodicalIF":4.1000,"publicationDate":"2025-01-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11699174/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers of Optoelectronics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s12200-024-00143-1","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
Current study presents an advanced method for improving the visualization of subsurface blood vessels using laser speckle contrast imaging (LSCI), enhanced through principal component analysis (PCA) filtering. By combining LSCI and laser speckle entropy imaging with PCA filtering, the method effectively separates static and dynamic components of the speckle signal, significantly improving the accuracy of blood flow assessments, even in the presence of static scattering layers located above and below the vessel. Experiments conducted on optical phantoms, with the vessel depths ranging from 0.6 to 2 mm, and in vivo studies on a laboratory mouse ear demonstrate substantial improvements in image contrast and resolution. The method's sensitivity to blood flow velocity within the physiologic range (0.98-19.66 mm/s) is significantly enhanced, while its sensitivity to vessel depth is minimized. These results highlight the method's ability to assess blood flow velocity independently of vessel depth, overcoming a major limitation of conventional LSCI techniques. The proposed approach holds great potential for non-invasive biomedical imaging, offering improved diagnostic accuracy and contrast in vascular imaging. These findings may be particularly valuable for advancing the use of LSCI in clinical diagnostics and biomedical research, where high precision in blood flow monitoring is essential.
期刊介绍:
Frontiers of Optoelectronics seeks to provide a multidisciplinary forum for a broad mix of peer-reviewed academic papers in order to promote rapid communication and exchange between researchers in China and abroad. It introduces and reflects significant achievements being made in the field of photonics or optoelectronics. The topics include, but are not limited to, semiconductor optoelectronics, nano-photonics, information photonics, energy photonics, ultrafast photonics, biomedical photonics, nonlinear photonics, fiber optics, laser and terahertz technology and intelligent photonics. The journal publishes reviews, research articles, letters, comments, special issues and so on.
Frontiers of Optoelectronics especially encourages papers from new emerging and multidisciplinary areas, papers reflecting the international trends of research and development, and on special topics reporting progress made in the field of optoelectronics. All published papers will reflect the original thoughts of researchers and practitioners on basic theories, design and new technology in optoelectronics.
Frontiers of Optoelectronics is strictly peer-reviewed and only accepts original submissions in English. It is a fully OA journal and the APCs are covered by Higher Education Press and Huazhong University of Science and Technology.
● Presents the latest developments in optoelectronics and optics
● Emphasizes the latest developments of new optoelectronic materials, devices, systems and applications
● Covers industrial photonics, information photonics, biomedical photonics, energy photonics, laser and terahertz technology, and more