{"title":"Accuracy, Reproducibility, and Gaps in Different Angulations of 3D-Printed versus Milled Hybrid Ceramic Crown.","authors":"Nadaprapai Khwanpuang, Chayaporn Suphachartwong, Awiruth Klaisiri, Seelassaya Leelaponglit, Chayanit Angkananuwat, Nantawan Krajangta","doi":"10.1055/s-0044-1795116","DOIUrl":null,"url":null,"abstract":"<p><strong>Objectives: </strong> This article compared the accuracy, reproducibility, and gap of crowns resulting from variations in print angulation of three-dimensional (3D)-printed VarseoSmile Crown<sup>plus</sup> (VS) and milled resin-ceramic hybrid materials (Cerasmart 270, CS, and Enamic, E).</p><p><strong>Materials and methods: </strong> A total of 60 specimens, consisting of VS printed at four different angulations (30, 45, 60, and 90 degrees), along with CS and E were investigated. External and internal accuracy and reproducibility were measured with the 3D deviation analysis. External and internal gaps were measured with the silicone replica technique. The results were analyzed using Welch's one-way analysis of variance with Dunnett T3 post hoc comparison at <i>p</i> ≤ 0.05.</p><p><strong>Results: </strong> Across all groups, external and internal accuracy were 0.55 to 20.02 μm and external and internal reproducibility were 0.05 to 0.69 μm. Overall external accuracy was not significant (<i>p</i> = 0.063), whereas significance was noted in overall internal accuracy and reproducibility among groups (<i>p</i> < 0.001). External and internal gaps were 33.76 to 93.11 μm. Statistically significant differences were found in internal and external gaps among groups (<i>p</i> < 0.001), with milled crowns demonstrating larger internal and smaller external gaps than 3D-printed crowns. Within the 3D-printed group, statistically, 90-degree angles exhibited the smallest external and internal gaps.</p><p><strong>Conclusion: </strong> Both milled and 3D-printed methods achieved clinically acceptable accuracy, reproducibility, and gap dimensions, offering viable options for hybrid ceramic crown restoration. Among 3D-printed crowns, the 90-degree printing angle group exhibited satisfactory accuracy and reproducibility, alongside the best internal and external fit.</p>","PeriodicalId":12028,"journal":{"name":"European Journal of Dentistry","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Dentistry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1055/s-0044-1795116","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Dentistry","Score":null,"Total":0}
引用次数: 0
Abstract
Objectives: This article compared the accuracy, reproducibility, and gap of crowns resulting from variations in print angulation of three-dimensional (3D)-printed VarseoSmile Crownplus (VS) and milled resin-ceramic hybrid materials (Cerasmart 270, CS, and Enamic, E).
Materials and methods: A total of 60 specimens, consisting of VS printed at four different angulations (30, 45, 60, and 90 degrees), along with CS and E were investigated. External and internal accuracy and reproducibility were measured with the 3D deviation analysis. External and internal gaps were measured with the silicone replica technique. The results were analyzed using Welch's one-way analysis of variance with Dunnett T3 post hoc comparison at p ≤ 0.05.
Results: Across all groups, external and internal accuracy were 0.55 to 20.02 μm and external and internal reproducibility were 0.05 to 0.69 μm. Overall external accuracy was not significant (p = 0.063), whereas significance was noted in overall internal accuracy and reproducibility among groups (p < 0.001). External and internal gaps were 33.76 to 93.11 μm. Statistically significant differences were found in internal and external gaps among groups (p < 0.001), with milled crowns demonstrating larger internal and smaller external gaps than 3D-printed crowns. Within the 3D-printed group, statistically, 90-degree angles exhibited the smallest external and internal gaps.
Conclusion: Both milled and 3D-printed methods achieved clinically acceptable accuracy, reproducibility, and gap dimensions, offering viable options for hybrid ceramic crown restoration. Among 3D-printed crowns, the 90-degree printing angle group exhibited satisfactory accuracy and reproducibility, alongside the best internal and external fit.
期刊介绍:
The European Journal of Dentistry is the official journal of the Dental Investigations Society, based in Turkey. It is a double-blinded peer-reviewed, Open Access, multi-disciplinary international journal addressing various aspects of dentistry. The journal''s board consists of eminent investigators in dentistry from across the globe and presents an ideal international composition. The journal encourages its authors to submit original investigations, reviews, and reports addressing various divisions of dentistry including oral pathology, prosthodontics, endodontics, orthodontics etc. It is available both online and in print.