Limitations of a proper SFTSV mouse model using human C-type lectin receptors.

IF 4 2区 生物学 Q2 MICROBIOLOGY
Frontiers in Microbiology Pub Date : 2024-12-19 eCollection Date: 2024-01-01 DOI:10.3389/fmicb.2024.1452739
You-Min Kim, Hyo-Jin Ro, Jae Hoon Lee, Yaechan Song, Han-Woong Lee, Nam-Hyuk Cho
{"title":"Limitations of a proper SFTSV mouse model using human C-type lectin receptors.","authors":"You-Min Kim, Hyo-Jin Ro, Jae Hoon Lee, Yaechan Song, Han-Woong Lee, Nam-Hyuk Cho","doi":"10.3389/fmicb.2024.1452739","DOIUrl":null,"url":null,"abstract":"<p><p>Severe fever with thrombocytopenia syndrome virus (SFTSV) is a tick-borne virus with a human mortality rate of up to 30%, posing a significant threat to public health. However, the lack of suitable research models has impeded the development of effective human vaccines. In this study, we engineered transgenic mice (3xTg) using a novel construct that simultaneously expresses three C-type Lectin receptors, identified as critical SFTSV entry receptors. While this construct substantially enhanced viral binding and infection in BJAB cells, the 3xTg mice exhibited only limited SFTSV replication in the lymph nodes and spleen, without significant impacts on morbidity or mortality. These findings highlight that the overexpression of entry receptors alone is insufficient to fully recapitulate human SFTSV infection in mice. Moreover, our results reveal that the introduction of multiple entry receptors does not necessarily translate to enhanced infection efficacy. This underscores the need for further investigation into the interplay between SFTSV entry mechanisms and host factors to develop more robust mouse models. Advancing such models will be crucial for unraveling the pathogenesis of SFTS pathology and improving strategies for its prevention and treatment in humans.</p>","PeriodicalId":12466,"journal":{"name":"Frontiers in Microbiology","volume":"15 ","pages":"1452739"},"PeriodicalIF":4.0000,"publicationDate":"2024-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11693710/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Microbiology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.3389/fmicb.2024.1452739","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Severe fever with thrombocytopenia syndrome virus (SFTSV) is a tick-borne virus with a human mortality rate of up to 30%, posing a significant threat to public health. However, the lack of suitable research models has impeded the development of effective human vaccines. In this study, we engineered transgenic mice (3xTg) using a novel construct that simultaneously expresses three C-type Lectin receptors, identified as critical SFTSV entry receptors. While this construct substantially enhanced viral binding and infection in BJAB cells, the 3xTg mice exhibited only limited SFTSV replication in the lymph nodes and spleen, without significant impacts on morbidity or mortality. These findings highlight that the overexpression of entry receptors alone is insufficient to fully recapitulate human SFTSV infection in mice. Moreover, our results reveal that the introduction of multiple entry receptors does not necessarily translate to enhanced infection efficacy. This underscores the need for further investigation into the interplay between SFTSV entry mechanisms and host factors to develop more robust mouse models. Advancing such models will be crucial for unraveling the pathogenesis of SFTS pathology and improving strategies for its prevention and treatment in humans.

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
7.70
自引率
9.60%
发文量
4837
审稿时长
14 weeks
期刊介绍: Frontiers in Microbiology is a leading journal in its field, publishing rigorously peer-reviewed research across the entire spectrum of microbiology. Field Chief Editor Martin G. Klotz at Washington State University is supported by an outstanding Editorial Board of international researchers. This multidisciplinary open-access journal is at the forefront of disseminating and communicating scientific knowledge and impactful discoveries to researchers, academics, clinicians and the public worldwide.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信