Clinical Significance of Acyl-CoA Dehydrogenase Short Chain and Its Anti-tumor Role in Hepatocellular Carcinoma by Inhibiting Canonical Wnt/β-Catenin Pathway.
{"title":"Clinical Significance of Acyl-CoA Dehydrogenase Short Chain and Its Anti-tumor Role in Hepatocellular Carcinoma by Inhibiting Canonical Wnt/β-Catenin Pathway.","authors":"Jiawei Gu, Zhipeng Cao, Gengming Niu, Jianghui Ying, Hui Wang, Hua Jiang, Chongwei Ke","doi":"10.1007/s10620-024-08813-y","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>The pathogenesis of hepatocellular carcinoma (HCC) emphasizes metabolic disorders. HCC patients showed abnormally low expression of Acyl-CoA dehydrogenase short chain (ACADS).</p><p><strong>Objectives: </strong>This study aimed to elucidate the clinical significance and mechanistic role of ACADS in HCC.</p><p><strong>Methods: </strong>We investigated the expression patterns and significance of ACADS in HCC by analyzing multiple public databases and clinical samples (Chip data). Immunohistochemistry was employed to observe the expression levels of ACADS in HCC tissues. In vitro experiments involved silencing or overexpressing ACADS in HCC cell lines, with protein expression levels determined by Western blotting. Functional validation included CCK-8, Transwell, and scratch wound healing assays. TOPFlash and FOPFlash reporter gene assays, co-immunoprecipitation, and immunofluorescence were used to explore the interaction between ACADS and β-catenin.</p><p><strong>Results: </strong>ACADS was low expressed in HCC and was clinically associated with vascular invasion, TNM stage, and AFP levels. The low ACADS expression in HCC patients was negatively correlated with their survival. Overexpression of ACADS significantly suppressed the viability, migration, and invasive capacity of HCC cells, whereas silencing ACADS had the opposite effect. Mechanistically, co-immunoprecipitation experiments indicated that there was an interaction between ACADS and β-catenin. Overexpression of ACADS inhibited β-catenin activity and resulted in decreased nuclear β-catenin translocation and increased its cytoplasmic level. Immunofluorescence results also showed a decrease in β-catenin nuclear import following ACADS overexpression, whereas silencing ACADS led to an enhancement of its nuclear translocation.</p><p><strong>Conclusion: </strong>ACADS emerges as a potentially valuable biomarker for HCC prognosis, exhibiting tumor-suppressive functions in HCC by participating in the regulation of β-catenin activity.</p>","PeriodicalId":11378,"journal":{"name":"Digestive Diseases and Sciences","volume":" ","pages":""},"PeriodicalIF":2.5000,"publicationDate":"2025-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Digestive Diseases and Sciences","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s10620-024-08813-y","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GASTROENTEROLOGY & HEPATOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Background: The pathogenesis of hepatocellular carcinoma (HCC) emphasizes metabolic disorders. HCC patients showed abnormally low expression of Acyl-CoA dehydrogenase short chain (ACADS).
Objectives: This study aimed to elucidate the clinical significance and mechanistic role of ACADS in HCC.
Methods: We investigated the expression patterns and significance of ACADS in HCC by analyzing multiple public databases and clinical samples (Chip data). Immunohistochemistry was employed to observe the expression levels of ACADS in HCC tissues. In vitro experiments involved silencing or overexpressing ACADS in HCC cell lines, with protein expression levels determined by Western blotting. Functional validation included CCK-8, Transwell, and scratch wound healing assays. TOPFlash and FOPFlash reporter gene assays, co-immunoprecipitation, and immunofluorescence were used to explore the interaction between ACADS and β-catenin.
Results: ACADS was low expressed in HCC and was clinically associated with vascular invasion, TNM stage, and AFP levels. The low ACADS expression in HCC patients was negatively correlated with their survival. Overexpression of ACADS significantly suppressed the viability, migration, and invasive capacity of HCC cells, whereas silencing ACADS had the opposite effect. Mechanistically, co-immunoprecipitation experiments indicated that there was an interaction between ACADS and β-catenin. Overexpression of ACADS inhibited β-catenin activity and resulted in decreased nuclear β-catenin translocation and increased its cytoplasmic level. Immunofluorescence results also showed a decrease in β-catenin nuclear import following ACADS overexpression, whereas silencing ACADS led to an enhancement of its nuclear translocation.
Conclusion: ACADS emerges as a potentially valuable biomarker for HCC prognosis, exhibiting tumor-suppressive functions in HCC by participating in the regulation of β-catenin activity.
期刊介绍:
Digestive Diseases and Sciences publishes high-quality, peer-reviewed, original papers addressing aspects of basic/translational and clinical research in gastroenterology, hepatology, and related fields. This well-illustrated journal features comprehensive coverage of basic pathophysiology, new technological advances, and clinical breakthroughs; insights from prominent academicians and practitioners concerning new scientific developments and practical medical issues; and discussions focusing on the latest changes in local and worldwide social, economic, and governmental policies that affect the delivery of care within the disciplines of gastroenterology and hepatology.