Identification, Biocontrol and Plant Growth Promotion Potential of Endophytic Streptomyces sp. a13.

IF 2.3 3区 生物学 Q3 MICROBIOLOGY
Chingakham Juliya Devi, Kangkon Saikia, Rajkumari Mazumdar, Rictika Das, Pranami Bharadwaj, Debajit Thakur
{"title":"Identification, Biocontrol and Plant Growth Promotion Potential of Endophytic Streptomyces sp. a13.","authors":"Chingakham Juliya Devi, Kangkon Saikia, Rajkumari Mazumdar, Rictika Das, Pranami Bharadwaj, Debajit Thakur","doi":"10.1007/s00284-024-04009-9","DOIUrl":null,"url":null,"abstract":"<p><p>Medicinal plants often harbour various endophytic actinomycetia, which are well known for their potent antimicrobial properties and plant growth-promoting traits. In this study, we isolated an endophytic actinomycetia, A13, from the leaves of tea clone P312 from the MEG Tea Estate, Meghalaya, India. The isolate A13 was identified as Streptomyces sp. A13 through whole genome sequencing (WGS) and 16S rRNA sequencing, showing 88% (ANI; Average Nucleotide Identity) and 99.78% sequence similarity with Streptomyces olivaceus. The strain A13 exhibited a prominent broad-spectrum antifungal activity against nine phytopathogens. It was observed that the ethyl acetate (EtAc) extract of A13 inhibits the spore germination rate of phytopathogen Nigrospora sphaerica (NSP) and also damages the fungal cell wall and cell structure. Additionally, the A13 strain exhibits several plant growth-promoting (PGP) traits, such as nitrogen fixation, ammonia production (4.7 µmol/ml), indole-acetic acid (IAA) production (8.91 µg/ml), siderophore production and 1-aminocyclopropane-1-carboxylate (ACC) deaminase activity Gas chromatography mass spectrometry (GC-MS) analysis revealed that Phenol, 3,5-bis(1,1-dimethylethyl) was found to be the major chemical constituent in the EtAc extract of the A13 strain, accounting for 50.15% of the area percentage. Whole genome sequencing and subsequent genome analysis utilizing bioinformatics techniques such as Antibiotics & Secondary Metabolite Analysis SHell (antiSMASH) and Rapid Annotation using Subsystem Technology (RAST) revealed a wide array of biologically active secondary metabolite biosynthesis gene clusters (smBGCs) with different physiologically significant roles. These findings emphasize the potential of the A13 strain as a biocontrol agent with the capability to enhance plant growth and prevent diseases.</p>","PeriodicalId":11360,"journal":{"name":"Current Microbiology","volume":"82 2","pages":"64"},"PeriodicalIF":2.3000,"publicationDate":"2025-01-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Microbiology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s00284-024-04009-9","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Medicinal plants often harbour various endophytic actinomycetia, which are well known for their potent antimicrobial properties and plant growth-promoting traits. In this study, we isolated an endophytic actinomycetia, A13, from the leaves of tea clone P312 from the MEG Tea Estate, Meghalaya, India. The isolate A13 was identified as Streptomyces sp. A13 through whole genome sequencing (WGS) and 16S rRNA sequencing, showing 88% (ANI; Average Nucleotide Identity) and 99.78% sequence similarity with Streptomyces olivaceus. The strain A13 exhibited a prominent broad-spectrum antifungal activity against nine phytopathogens. It was observed that the ethyl acetate (EtAc) extract of A13 inhibits the spore germination rate of phytopathogen Nigrospora sphaerica (NSP) and also damages the fungal cell wall and cell structure. Additionally, the A13 strain exhibits several plant growth-promoting (PGP) traits, such as nitrogen fixation, ammonia production (4.7 µmol/ml), indole-acetic acid (IAA) production (8.91 µg/ml), siderophore production and 1-aminocyclopropane-1-carboxylate (ACC) deaminase activity Gas chromatography mass spectrometry (GC-MS) analysis revealed that Phenol, 3,5-bis(1,1-dimethylethyl) was found to be the major chemical constituent in the EtAc extract of the A13 strain, accounting for 50.15% of the area percentage. Whole genome sequencing and subsequent genome analysis utilizing bioinformatics techniques such as Antibiotics & Secondary Metabolite Analysis SHell (antiSMASH) and Rapid Annotation using Subsystem Technology (RAST) revealed a wide array of biologically active secondary metabolite biosynthesis gene clusters (smBGCs) with different physiologically significant roles. These findings emphasize the potential of the A13 strain as a biocontrol agent with the capability to enhance plant growth and prevent diseases.

内生链霉菌(Streptomyces sp. a13)的鉴定、生物防治及促生潜力
药用植物通常含有各种内生放线菌,这些放线菌以其有效的抗菌特性和促进植物生长的特性而闻名。本研究从印度梅加拉亚邦MEG茶园的茶叶无性系P312的叶片中分离到一株内生放线菌A13。通过全基因组测序(WGS)和16S rRNA测序,鉴定菌株A13为链霉菌(Streptomyces sp. A13)。与橄榄链霉菌(Streptomyces olivaceus)序列相似性达99.78%。菌株A13对9种植物病原菌具有明显的广谱抗真菌活性。结果表明,A13的乙酸乙酯(EtAc)提取物可抑制球形黑孢菌(NSP)的孢子萌发率,并破坏真菌细胞壁和细胞结构。此外,A13菌株表现出固氮、产氨(4.7µmol/ml)、产吲哚乙酸(IAA)(8.91µg/ml)、产铁载体和1-氨基环丙烷-1-羧酸酯(ACC)脱氨酶活性等植物生长促进(PGP)性状,气相色谱-质谱(GC-MS)分析发现,苯酚,3,5-二甲基乙基(1,1-二甲基乙基)是A13菌株EtAc提取物的主要化学成分。占面积百分比的50.15%。全基因组测序和随后的基因组分析利用生物信息学技术,如抗生素和次生代谢物分析SHell (antiSMASH)和快速注释使用子系统技术(RAST)揭示了一系列具有不同生理意义的生物活性次生代谢物生物合成基因簇(smBGCs)。这些发现强调了A13菌株作为一种生物防治剂的潜力,具有促进植物生长和预防疾病的能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Current Microbiology
Current Microbiology 生物-微生物学
CiteScore
4.80
自引率
3.80%
发文量
380
审稿时长
2.5 months
期刊介绍: Current Microbiology is a well-established journal that publishes articles in all aspects of microbial cells and the interactions between the microorganisms, their hosts and the environment. Current Microbiology publishes original research articles, short communications, reviews and letters to the editor, spanning the following areas: physiology, biochemistry, genetics, genomics, biotechnology, ecology, evolution, morphology, taxonomy, diagnostic methods, medical and clinical microbiology and immunology as applied to microorganisms.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信