Dexmedetomidine Inhibits Ferroptosis to Alleviate Hypoxia/Reoxygenation-Induced Cardiomyocyte Injury by Regulating the HDAC2/FPN Pathway.

IF 3.1 3区 医学 Q2 CARDIAC & CARDIOVASCULAR SYSTEMS
Yueqi Fu, QingDong Wang, DongWei Wang, Yicong Li
{"title":"Dexmedetomidine Inhibits Ferroptosis to Alleviate Hypoxia/Reoxygenation-Induced Cardiomyocyte Injury by Regulating the HDAC2/FPN Pathway.","authors":"Yueqi Fu, QingDong Wang, DongWei Wang, Yicong Li","doi":"10.1007/s10557-024-07664-z","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>Myocardial ischemia/reperfusion injury (MIRI) is closely associated with ferroptosis. Dexmedetomidine (Dex) has good therapeutic effects on MIRI. This study investigates whether dexmedetomidine (Dex) regulates ferroptosis during MIRI by affecting ferroportin1 (FPN) levels and elucidates the underlying mechanisms.</p><p><strong>Methods: </strong>A murine MIRI model was established using male C57BL/6 J mice subjected to 30 min of left anterior descending coronary artery ligation followed by 48 h of reperfusion. In vitro, cardiomyocyte hypoxia/reoxygenation (H/R) models were created with 16 h of hypoxia and 8 h of reoxygenation. Triphenyltetrazolium chloride (TTC) staining was employed to determine infarct size. The pathological changes in myocardial tissues were assessed using hematoxylin-eosin (HE) staining. Lipid reactive oxygen species (ROS) level was detected using BODIPY™ 581/591 C11, and ferrous iron (Fe<sup>2+</sup>) and malondialdehyde (MDA) levels were measured using the kits. Cardiomyocyte viability was examined using cell counting kit-8 (CCK8) assay. The histone H3 lysine 27 acetylation (H3K27Ac) level in the FPN promoter region was determined using DNA pulldown assay. Chromatin immunoprecipitation (ChIP) assay was used to investigate the relationship between histone deacetylase 2 (HDAC2) and FPN promoter.</p><p><strong>Results: </strong>Dex alleviated ferroptosis in cardiomyocytes by upregulating FPN levels, which mitigated H/R-induced oxidative damage. FPN knockdown abolished the protective effects of Dex, confirming its dependence on FPN expression. Additionally, HDAC2 knockdown alleviated I/R-induced myocardial injury and ferroptosis in mice. Moreover, H/R-induced HDAC2 upregulation transcriptionally inhibited FPN expression by reducing the H3K27Ac level in the FPN promoter region, but Dex therapy restored this impact via inhibition of HDAC2. As expected, HDAC2 overexpression partially reversed the inhibitory effect of Dex on H/R-mediated cardiomyocyte ferroptosis.</p><p><strong>Conclusion: </strong>Dex alleviated H/R-mediated cardiomyocyte ferroptosis through regulating the HDAC2/FPN axis. Our findings lend theoretical support to the use of Dex in MIRI therapy.</p>","PeriodicalId":9557,"journal":{"name":"Cardiovascular Drugs and Therapy","volume":" ","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2025-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cardiovascular Drugs and Therapy","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s10557-024-07664-z","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CARDIAC & CARDIOVASCULAR SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

Purpose: Myocardial ischemia/reperfusion injury (MIRI) is closely associated with ferroptosis. Dexmedetomidine (Dex) has good therapeutic effects on MIRI. This study investigates whether dexmedetomidine (Dex) regulates ferroptosis during MIRI by affecting ferroportin1 (FPN) levels and elucidates the underlying mechanisms.

Methods: A murine MIRI model was established using male C57BL/6 J mice subjected to 30 min of left anterior descending coronary artery ligation followed by 48 h of reperfusion. In vitro, cardiomyocyte hypoxia/reoxygenation (H/R) models were created with 16 h of hypoxia and 8 h of reoxygenation. Triphenyltetrazolium chloride (TTC) staining was employed to determine infarct size. The pathological changes in myocardial tissues were assessed using hematoxylin-eosin (HE) staining. Lipid reactive oxygen species (ROS) level was detected using BODIPY™ 581/591 C11, and ferrous iron (Fe2+) and malondialdehyde (MDA) levels were measured using the kits. Cardiomyocyte viability was examined using cell counting kit-8 (CCK8) assay. The histone H3 lysine 27 acetylation (H3K27Ac) level in the FPN promoter region was determined using DNA pulldown assay. Chromatin immunoprecipitation (ChIP) assay was used to investigate the relationship between histone deacetylase 2 (HDAC2) and FPN promoter.

Results: Dex alleviated ferroptosis in cardiomyocytes by upregulating FPN levels, which mitigated H/R-induced oxidative damage. FPN knockdown abolished the protective effects of Dex, confirming its dependence on FPN expression. Additionally, HDAC2 knockdown alleviated I/R-induced myocardial injury and ferroptosis in mice. Moreover, H/R-induced HDAC2 upregulation transcriptionally inhibited FPN expression by reducing the H3K27Ac level in the FPN promoter region, but Dex therapy restored this impact via inhibition of HDAC2. As expected, HDAC2 overexpression partially reversed the inhibitory effect of Dex on H/R-mediated cardiomyocyte ferroptosis.

Conclusion: Dex alleviated H/R-mediated cardiomyocyte ferroptosis through regulating the HDAC2/FPN axis. Our findings lend theoretical support to the use of Dex in MIRI therapy.

右美托咪定通过调节HDAC2/FPN通路抑制铁下垂减轻缺氧/再氧诱导的心肌细胞损伤
目的:心肌缺血/再灌注损伤(MIRI)与铁下垂密切相关。右美托咪定对MIRI有良好的治疗效果。本研究探讨右美托咪定(Dex)是否通过影响铁转运蛋白1 (FPN)水平调节MIRI期间的铁下垂,并阐明其潜在机制。方法:雄性C57BL/6 J小鼠左冠状动脉前降支结扎30 min,再灌注48 h,建立小鼠MIRI模型。体外建立心肌细胞缺氧/再氧化(H/R)模型,缺氧16 H,再氧化8 H。三苯基四唑氯(TTC)染色测定梗死面积。采用苏木精-伊红(HE)染色观察大鼠心肌组织病理变化。使用BODIPY™581/591 C11检测脂质活性氧(ROS)水平,使用该试剂盒检测亚铁(Fe2+)和丙二醛(MDA)水平。采用细胞计数试剂盒-8 (CCK8)法检测心肌细胞活力。采用DNA下拉法测定FPN启动子区组蛋白H3赖氨酸27乙酰化(H3K27Ac)水平。采用染色质免疫沉淀法(ChIP)研究组蛋白去乙酰化酶2 (HDAC2)与FPN启动子的关系。结果:Dex通过上调FPN水平,减轻H/ r诱导的氧化损伤,从而减轻心肌细胞铁下垂。FPN敲除消除了Dex的保护作用,证实了其对FPN表达的依赖性。此外,HDAC2敲低可减轻I/ r诱导的小鼠心肌损伤和铁下垂。此外,H/ r诱导的HDAC2上调通过降低FPN启动子区域的H3K27Ac水平来抑制FPN的转录表达,但Dex治疗通过抑制HDAC2恢复了这种影响。正如预期的那样,HDAC2过表达部分逆转了Dex对H/ r介导的心肌细胞铁下垂的抑制作用。结论:Dex通过调节HDAC2/FPN轴减轻H/ r介导的心肌细胞铁下垂。我们的研究结果为在MIRI治疗中使用Dex提供了理论支持。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Cardiovascular Drugs and Therapy
Cardiovascular Drugs and Therapy 医学-心血管系统
CiteScore
8.30
自引率
0.00%
发文量
110
审稿时长
4.5 months
期刊介绍: Designed to objectively cover the process of bench to bedside development of cardiovascular drug, device and cell therapy, and to bring you the information you need most in a timely and useful format, Cardiovascular Drugs and Therapy takes a fresh and energetic look at advances in this dynamic field. Homing in on the most exciting work being done on new therapeutic agents, Cardiovascular Drugs and Therapy focusses on developments in atherosclerosis, hyperlipidemia, diabetes, ischemic syndromes and arrhythmias. The Journal is an authoritative source of current and relevant information that is indispensable for basic and clinical investigators aiming for novel, breakthrough research as well as for cardiologists seeking to best serve their patients. Providing you with a single, concise reference tool acknowledged to be among the finest in the world, Cardiovascular Drugs and Therapy is listed in Web of Science and PubMed/Medline among other abstracting and indexing services. The regular articles and frequent special topical issues equip you with an up-to-date source defined by the need for accurate information on an ever-evolving field. Cardiovascular Drugs and Therapy is a careful and accurate guide through the maze of new products and therapies which furnishes you with the details on cardiovascular pharmacology that you will refer to time and time again.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信