Focusing Effects on Laser-Induced Plasma Parameters: Applications to a Graphite Target Under Martian Atmospheric Conditions.

IF 2.2 3区 化学 Q2 INSTRUMENTS & INSTRUMENTATION
Kouider Benbaier, Ahmed Abdelmalek, Zeyneb Bedrane, Noureddine Melikechi
{"title":"Focusing Effects on Laser-Induced Plasma Parameters: Applications to a Graphite Target Under Martian Atmospheric Conditions.","authors":"Kouider Benbaier, Ahmed Abdelmalek, Zeyneb Bedrane, Noureddine Melikechi","doi":"10.1177/00037028241307675","DOIUrl":null,"url":null,"abstract":"<p><p>Under various atmospheric conditions, laser-induced breakdown spectroscopy (LIBS) is a powerful technique for elemental analysis, including in Earth- and Mars-like environments. However, understanding the plasma behavior and its dependence on ambient pressure and laser parameters remains a challenge. In this study, a numerical model based on a three-temperature Eulerian radiation framework under non-local thermodynamic equilibrium conditions is employed to investigate the interaction of a nanosecond laser pulse with a graphite target under helium (He) and carbon dioxide (CO<sub>2</sub> atmospheres. The aim is to provide insights into the effects of focusing conditions and ambient pressure (3 to 9 mbar and 1000 mbar) on plasma parameters relevant to both Earth- and Mars-like settings. Our results show that increased ambient pressure significantly enhances electron and ion densities, while the focusing conditions influence the temperature and fluid velocity of plasma species, as well as the spatial distribution and intensity of the plasma, ultimately affecting its diagnostic potential. These findings are critical for optimizing LIBS applications in planetary exploration and contribute to improving quantitative analyses under varying atmospheric compositions.</p>","PeriodicalId":8253,"journal":{"name":"Applied Spectroscopy","volume":" ","pages":"37028241307675"},"PeriodicalIF":2.2000,"publicationDate":"2025-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Spectroscopy","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1177/00037028241307675","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"INSTRUMENTS & INSTRUMENTATION","Score":null,"Total":0}
引用次数: 0

Abstract

Under various atmospheric conditions, laser-induced breakdown spectroscopy (LIBS) is a powerful technique for elemental analysis, including in Earth- and Mars-like environments. However, understanding the plasma behavior and its dependence on ambient pressure and laser parameters remains a challenge. In this study, a numerical model based on a three-temperature Eulerian radiation framework under non-local thermodynamic equilibrium conditions is employed to investigate the interaction of a nanosecond laser pulse with a graphite target under helium (He) and carbon dioxide (CO2 atmospheres. The aim is to provide insights into the effects of focusing conditions and ambient pressure (3 to 9 mbar and 1000 mbar) on plasma parameters relevant to both Earth- and Mars-like settings. Our results show that increased ambient pressure significantly enhances electron and ion densities, while the focusing conditions influence the temperature and fluid velocity of plasma species, as well as the spatial distribution and intensity of the plasma, ultimately affecting its diagnostic potential. These findings are critical for optimizing LIBS applications in planetary exploration and contribute to improving quantitative analyses under varying atmospheric compositions.

在各种大气条件下,激光诱导击穿光谱(LIBS)是一种强大的元素分析技术,包括在类地、类火星环境中。然而,了解等离子体的行为及其与环境压力和激光参数的关系仍然是一项挑战。在这项研究中,采用了一个基于非局部热力学平衡条件下的三温欧拉辐射框架的数值模型,来研究纳秒激光脉冲与石墨靶在氦气(He)和二氧化碳(CO2)气氛下的相互作用。目的是深入了解聚焦条件和环境压力(3 至 9 毫巴和 1000 毫巴)对与地球和类火星环境相关的等离子体参数的影响。我们的结果表明,环境压力的增加会显著提高电子和离子密度,而聚焦条件则会影响等离子体的温度和流体速度,以及等离子体的空间分布和强度,最终影响其诊断潜力。这些发现对于优化 LIBS 在行星探测中的应用至关重要,并有助于改进不同大气成分下的定量分析。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Applied Spectroscopy
Applied Spectroscopy 工程技术-光谱学
CiteScore
6.60
自引率
5.70%
发文量
139
审稿时长
3.5 months
期刊介绍: Applied Spectroscopy is one of the world''s leading spectroscopy journals, publishing high-quality peer-reviewed articles, both fundamental and applied, covering all aspects of spectroscopy. Established in 1951, the journal is owned by the Society for Applied Spectroscopy and is published monthly. The journal is dedicated to fulfilling the mission of the Society to “…advance and disseminate knowledge and information concerning the art and science of spectroscopy and other allied sciences.”
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信