A novel approach for inferring effects on pregnancy loss.

IF 5 2区 医学 Q1 PUBLIC, ENVIRONMENTAL & OCCUPATIONAL HEALTH
Michael Leung, Sebastian T Rowland, Anna M Modest, Michele R Hacker, Stefania Papatheodorou, Yaguang Wei, Joel Schwartz, Brent A Coull, Ander Wilson, Marianthi-Anna Kioumourtzoglou, Marc G Weisskopf
{"title":"A novel approach for inferring effects on pregnancy loss.","authors":"Michael Leung, Sebastian T Rowland, Anna M Modest, Michele R Hacker, Stefania Papatheodorou, Yaguang Wei, Joel Schwartz, Brent A Coull, Ander Wilson, Marianthi-Anna Kioumourtzoglou, Marc G Weisskopf","doi":"10.1093/aje/kwae475","DOIUrl":null,"url":null,"abstract":"<p><p>Identifying the determinants of pregnancy loss is a critical public health concern. However, pregnancy loss is often not noticed, and even when it is, it is inconsistently recorded. Thus, past studies have been limited to medically-identified losses or small, highly selected cohorts, which can lead to biased or non-generalizable results. We show mathematically and through simulations a novel approach that overcomes this measurement challenge to infer effects about pregnancy loss by utilizing more available data: the number of conceptions that led to live births-i.e., live-birth-identified conceptions (LBICs). We simulated ten years of conceptions, pregnancies, losses, and births under several confounding patterns, and two NO2-pregnancy loss relationships (no effect, mid-gestation effect). We fitted distributed lag models (DLMs) adjusted for season, year, and temperature, and assessed model performance through bias and coverage. Our simulations showed that our models, across all scenarios, identified the two NO2-pregnancy loss relationships with appropriate coverage (>90% of confidence intervals captured the true effect) and low bias (never exceeded ±2%). In an applied example using NO2-a traffic emissions tracer-and live birth data from a large tertiary-care hospital in Massachusetts, USA, we found that higher prenatal NO2 was associated with more pregnancy losses. Our proposed approach based on LBICs provides an alternative way to study causes of pregnancy loss.</p>","PeriodicalId":7472,"journal":{"name":"American journal of epidemiology","volume":" ","pages":""},"PeriodicalIF":5.0000,"publicationDate":"2024-12-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"American journal of epidemiology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1093/aje/kwae475","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PUBLIC, ENVIRONMENTAL & OCCUPATIONAL HEALTH","Score":null,"Total":0}
引用次数: 0

Abstract

Identifying the determinants of pregnancy loss is a critical public health concern. However, pregnancy loss is often not noticed, and even when it is, it is inconsistently recorded. Thus, past studies have been limited to medically-identified losses or small, highly selected cohorts, which can lead to biased or non-generalizable results. We show mathematically and through simulations a novel approach that overcomes this measurement challenge to infer effects about pregnancy loss by utilizing more available data: the number of conceptions that led to live births-i.e., live-birth-identified conceptions (LBICs). We simulated ten years of conceptions, pregnancies, losses, and births under several confounding patterns, and two NO2-pregnancy loss relationships (no effect, mid-gestation effect). We fitted distributed lag models (DLMs) adjusted for season, year, and temperature, and assessed model performance through bias and coverage. Our simulations showed that our models, across all scenarios, identified the two NO2-pregnancy loss relationships with appropriate coverage (>90% of confidence intervals captured the true effect) and low bias (never exceeded ±2%). In an applied example using NO2-a traffic emissions tracer-and live birth data from a large tertiary-care hospital in Massachusetts, USA, we found that higher prenatal NO2 was associated with more pregnancy losses. Our proposed approach based on LBICs provides an alternative way to study causes of pregnancy loss.

求助全文
约1分钟内获得全文 求助全文
来源期刊
American journal of epidemiology
American journal of epidemiology 医学-公共卫生、环境卫生与职业卫生
CiteScore
7.40
自引率
4.00%
发文量
221
审稿时长
3-6 weeks
期刊介绍: The American Journal of Epidemiology is the oldest and one of the premier epidemiologic journals devoted to the publication of empirical research findings, opinion pieces, and methodological developments in the field of epidemiologic research. It is a peer-reviewed journal aimed at both fellow epidemiologists and those who use epidemiologic data, including public health workers and clinicians.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信