Association of Single Nucleotide Polymorphisms in Cysteamine Dioxygenase Gene with Taurine Content in Oyster Crassostrea gigas

IF 2.6 3区 生物学 Q3 BIOTECHNOLOGY & APPLIED MICROBIOLOGY
Shiqing Sun, Ning Kong, Xiang Li, Chunyu Jiang, Mingyu Xue, Lingling Wang, Linsheng Song
{"title":"Association of Single Nucleotide Polymorphisms in Cysteamine Dioxygenase Gene with Taurine Content in Oyster Crassostrea gigas","authors":"Shiqing Sun,&nbsp;Ning Kong,&nbsp;Xiang Li,&nbsp;Chunyu Jiang,&nbsp;Mingyu Xue,&nbsp;Lingling Wang,&nbsp;Linsheng Song","doi":"10.1007/s10126-024-10404-x","DOIUrl":null,"url":null,"abstract":"<div><p>The Pacific oyster <i>Crassostrea gigas</i> is rich in taurine, a conditionally essential amino acid functioning in anti-oxidation, anti-inflammation, anti-aging, osmoregulation, and neuromodulation. Breeding oyster varieties with enhanced taurine content is significant to meet people’s demand for high-quality oysters. In the present study, polymorphisms in the oyster cysteamine dioxygenase (<i>Cg</i>ADO) gene that encodes the central enzyme of the cysteamine pathway for taurine synthesis were investigated, and their association with taurine content was assessed in the Changhai (CH) and Qinhuangdao (QHD) populations. A total of 47 single nucleotide polymorphism (SNP) loci were identified in the exonic region of <i>Cg</i>ADO through Sanger sequencing, with a synonymous SNP (c.415T&gt;C) showing a significant association with taurine content. Oysters with the CT genotype at c.415T&gt;C exhibited higher taurine content than those with the TT genotype (<i>p</i> &lt; 0.05). Moreover, a significant difference in the <i>Cg</i>ADO mRNA expression was observed between oysters with different genotypes, with higher expression in the CT genotype compared to the TT genotype (<i>p</i> &lt; 0.001). These findings indicate the potential influence of <i>Cg</i>ADO polymorphisms on taurine content in <i>C. gigas</i> and provide candidate functional markers for the selective breeding of oyster varieties with improved taurine levels.</p></div>","PeriodicalId":690,"journal":{"name":"Marine Biotechnology","volume":"27 1","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2025-01-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Marine Biotechnology","FirstCategoryId":"99","ListUrlMain":"https://link.springer.com/article/10.1007/s10126-024-10404-x","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

The Pacific oyster Crassostrea gigas is rich in taurine, a conditionally essential amino acid functioning in anti-oxidation, anti-inflammation, anti-aging, osmoregulation, and neuromodulation. Breeding oyster varieties with enhanced taurine content is significant to meet people’s demand for high-quality oysters. In the present study, polymorphisms in the oyster cysteamine dioxygenase (CgADO) gene that encodes the central enzyme of the cysteamine pathway for taurine synthesis were investigated, and their association with taurine content was assessed in the Changhai (CH) and Qinhuangdao (QHD) populations. A total of 47 single nucleotide polymorphism (SNP) loci were identified in the exonic region of CgADO through Sanger sequencing, with a synonymous SNP (c.415T>C) showing a significant association with taurine content. Oysters with the CT genotype at c.415T>C exhibited higher taurine content than those with the TT genotype (p < 0.05). Moreover, a significant difference in the CgADO mRNA expression was observed between oysters with different genotypes, with higher expression in the CT genotype compared to the TT genotype (p < 0.001). These findings indicate the potential influence of CgADO polymorphisms on taurine content in C. gigas and provide candidate functional markers for the selective breeding of oyster varieties with improved taurine levels.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Marine Biotechnology
Marine Biotechnology 工程技术-海洋与淡水生物学
CiteScore
4.80
自引率
3.30%
发文量
95
审稿时长
2 months
期刊介绍: Marine Biotechnology welcomes high-quality research papers presenting novel data on the biotechnology of aquatic organisms. The journal publishes high quality papers in the areas of molecular biology, genomics, proteomics, cell biology, and biochemistry, and particularly encourages submissions of papers related to genome biology such as linkage mapping, large-scale gene discoveries, QTL analysis, physical mapping, and comparative and functional genome analysis. Papers on technological development and marine natural products should demonstrate innovation and novel applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信